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The relationship from � to � is through the black-box.

Black-box Optimization
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Properties of Black-box Function

�: � ∈ ℛ� → � ∈ ℛ�
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� � = �(�)

Function form is not known � = �� + �

No derivative form
��

��
= ⋯ 

Expensive to evaluate (in time and cost)

Nothing is known about the function, except a few evaluations � = �(�)

input output
�(�)
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Bayesian Optimization Overview
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Bayes Opt

input �

output �Refine 
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Acquisition function
exploit explore

�(�) = �(�) + � × �(�)

Surrogate function

predictive mean predictive variance

�(�) �(�)

Make a series of evaluations ��, ��, … ��
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Bayesian Optimization

Bayes Opt with Known Optimum Value

Outline
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We consider situations where the optimum value is known.

�∗ = max �(�) and the goal is to find �∗ = arg max �(�).

Knowing Optimum Value of The Black-Box
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Deep reinforcement learning:

CartPole: 200

Pong: 18

Frozen Lake: 0.79 ±  0.05

InvertedPendulum: 950

Classification:

Skin dataset: Accuracy 100

Inverse optimization: 

Given a database and a target property �, identifying a 
corresponding data point �∗.

Examples of Knowing Optimal Value of The Black-Box
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1. �∗ tells us about the upper bound: �∗ ≥ � � , ∀�

2. �∗ tells us that the function is reaching �∗ at some points.

What can �∗ tell us about � ?
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Transformed Gaussian process
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This condition ensures that �∗ ≥ � � , ∀�

� � ∼ ��( 2�∗, �)� � = �∗ −
1

2
��(�) 

≥ 0
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Push down: the surrogate must not go above �∗

We want to control the surrogate using �∗
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below �∗

�(�) is above �∗

standard GP
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� � = �∗ −
�

�
��(�)

This condition encourages that there is a point where 
� � = 0 and thus  �∗ = � �

Transformed Gaussian process
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� � ∼ ��(0, �)
Zero mean prior !

≥ 0
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Lift up: the surrogate should reach �∗

We want to control the surrogate using �∗

Knowing the what, but not the where in Bayes Opt 12

reach �∗

�(�) does 
not reach �∗
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Linearization using Taylor expansion

� � ≈ �∗ −
1

2
��

� � − �� � � � − �� �

 = �∗ +
1

2
��

� � − �� � � �           

Linear transformation of a GP remains Gaussian

� � = �∗ −
1

2
��

�(�)

� � = �� � �� � ��(�)

The predictive distribution � � ∼ �(� � , �(�))

Taylor expansion is very accurate at the mode which is ��
�(�)

Transformed Gaussian process
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Bayesian Optimization

Bayes Opt with Known Optimum Value �∗

Problem definition

Exploiting �∗

Building better surrogate model

Making informed decision

Outline
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Under GP surrogate model, we have this condition w.h.p.

where �� is defined following [Srinivas et al 2010].  This means

� �∗ − ��� �∗ ≤ � �∗ = �∗ ≤ � �∗ + ��� �∗

Confidence Bound Minimization
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Lower bound Upper boundknownunknown

can be estimated ∀�

Upper bound

Lower bound
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The best candidate for �∗ is where the bound is tight

�� = arg min � � − �∗ + ��� �

The inequality becomes equality at the true �∗ location where

� �∗ − ��� �∗ = �∗ = � �∗ + ��� �∗

when � �∗ = �∗ and � �∗ = 0

Confidence Bound Minimization

Knowing the what, but not the where in Bayes Opt 16

Lower bound Upper boundknown

Upper bound

Lower bound
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Regret � = �∗ − �(��) where �∗ = max � � , ∀�

Finding the optimum location �∗ = minimizing the regret. 

We can select the next point by minimizing the expected regret.

Expected Regret Minimization

Knowing the what, but not the where in Bayes Opt 17



Vu Nguyen

Using analytical derivation, we derive the closed-form 
computation for ERM.

������∗
� = � � × � � + �∗ − � � × Φ �

� =
�∗�� �

� �

See the paper for details!

Expected Regret Minimization
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Gaussian PDF Gaussian CDF

GP variance GP mean
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Illustration
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Existing Baselines

The Proposed
Correctly identify 

the true
(unknown) location

Tend to explore
elsewhere
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The GP transformation is helpful in high dimension
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Skin dataset UCI �∗ = 100

CartPole DRL �∗ = 200

XGBoost Classification and DRL
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Under-specified �∗ smaller than the true �∗

More serious, as the algorithm will get stuck.

Over-specified �∗ greater than the true �∗

Less serious, but still poor performance.

Mis-specified �∗ will degrade the performance
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Bayes opt is efficient for optimizing the black-box function

When the optimum value is known, we can exploit this 
knowledge for better optimization.

Take Home Messages
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Question and Answer

Conclusion 24
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