Knowing The What, But Not The Where in Bayesian Optimization <u>Vu Nguyen & Michael A. Osborne</u> University of Oxford

The relationship from x to y is through the black-box.

Properties of Black-box Function

$$f \colon X \in \mathcal{R}^d \to Y \in \mathcal{R}^1$$

No derivative form

Expensive to evaluate (in time and cost)

Nothing is known about the function, except a few evaluations y = f(x)

Bayesian Optimization Overview

Vu Nguyen Bayesian Optimization

Outline

• Bayesian Optimization

• Bayes Opt with Known Optimum Value

Knowing Optimum Value of The Black-Box

- We consider situations where the **optimum value** is known.
- $f^* = \max f(x)$ and the goal is to find $x^* = \arg \max f(x)$.

Examples of Knowing Optimal Value of The Black-Box

- Deep reinforcement learning:
 - CartPole: 200
 - Pong: 18
 - Frozen Lake: 0.79 ± 0.05
 - InvertedPendulum: 950
- Classification:
 - Skin dataset: Accuracy 100

- Inverse optimization:
 - Given a database and a target property t, identifying a corresponding data point x^* .

What can f^* tell us about f ?

 $2 f^*$ tells us that the function is reaching f^* at some points.

Transformed Gaussian process

$$f(x) = f^* - \frac{1}{2} \frac{g^2(x)}{\sum_{k=0}^{\infty}} \qquad g(x) \sim GP(\sqrt{2f^*}, K)$$

This condition ensures that $f^* \ge f(x)$, $\forall x$

 $\langle 1 \rangle$

We want to control the surrogate using f^*

1 Push down: the surrogate must not go above f^*

transformed GP below *f**

Transformed Gaussian process

•
$$f(x) = f^* - \frac{1}{2}g^2(x)$$

 ≥ 0

$$g(x) \sim GP(0, K)$$
Zero mean prior !

• This condition encourages that there is a point where g(x) = 0 and thus $f^* = f(x)$

We want to control the surrogate using f^*

• Linearization using Taylor expansion

$$\begin{split} f(x) &\approx f^* - \frac{1}{2} \mu_g^2(x) - \mu_g(x) \big[g(x) - \mu_g(x) \big] \\ &= f^* + \frac{1}{2} \mu_g^2(x) - \mu_g(x) g(x) \end{split}$$

• Linear transformation of a GP remains Gaussian

$$\mu(x) = f^* - \frac{1}{2}\mu_g^2(x)$$

$$\sigma(x) = \mu_g(x)\sigma_g(x)\mu_g(x)$$

• The predictive distribution $p(x) \sim \mathcal{N}(\mu(x), \sigma(x))$

• Taylor expansion is very accurate at the mode which is $\mu_q^2(x)$

Outline

• Bayesian Optimization

ullet Bayes Opt with Known Optimum Value f^*

- Problem definition
- Exploiting f^*
 - Building better surrogate model
 - Making informed decision

Confidence Bound Minimization

• Under GP surrogate model, we have this condition w.h.p.

where β_t is defined following [Srinivas et al 2010]. This means

Confidence Bound Minimization

• The best candidate for x^* is where the bound is tight

• The inequality becomes equality at the true x^* location where

$$\mu(x^*) - \sqrt{\beta_t}\sigma(x^*) = f^* = \mu(x^*) + \sqrt{\beta_t}\sigma(x^*)$$

Lower bound known Upper bound when $\mu(x^*) = f^*$ and $\sigma(x^*) = 0$

• Regret
$$r = f^* - f(x_t)$$
 where $f^* = \max f(x), \forall x$

• Finding the optimum location x^* = minimizing the regret.

• We can select the next point by minimizing the expected regret.

$$\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathscr{X}} \alpha^{\mathrm{ERM}+f^*}(\mathbf{x}) = \arg\min_{\mathbf{x}\in\mathscr{X}} \mathbb{E}[r(\mathbf{x})]$$

Expected Regret Minimization

• Using analytical derivation, we derive the closed-form computation for ERM.

• See the paper for details!

The GP transformation is helpful in high dimension

XGBoost Classification and DRL

• Skin dataset UCI
$$f^* = 100$$

Variables	Min	Max	Found x *
min child weight	1	20	4.66
colsample bytree	0.1	1	0.99
max depth	5	15	9.71
subsample	0.5	1	0.77
alpha	0	10	0.82
gamma	0	10	0.51

Advantage Actor Critic on CartPole D=3

15

Iteration

20

25

• CartPole DRL
$$f^* = 200$$

Variables	Min	Max	Best Parameter x*
γ discount factor	0.9	1	0.95586
learning rate q model	$1e^{-6}$	0.01	0.00589
learning rate v model	$1e^{-6}$	0.01	0.00037

0

5

10

Reward

30

Mis-specified f^* will degrade the performance

- Under-specified f^* smaller than the true f^*
 - More serious, as the algorithm will get stuck.
- Over-specified f^* greater than the true f^*
 - Less serious, but still poor performance.

Take Home Messages

- Bayes opt is efficient for optimizing the black-box function
- When the optimum value is known, we can exploit this knowledge for better optimization.

Question and Answer

vu@robots.ox.ac.uk

@nguyentienvu

https://ntienvu.github.io