Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables

Q. Wang & Herke van Hoof

Amsterdam Machine Learning Lab

ICML 2020

Highlights in this Work

\bullet A systematical revisit to $\mathcal{SP}s$ with an Implicit Latent Variable Model

- \blacktriangleright conceptualization of latent \mathcal{SP} models
- \blacktriangleright comprehension about $\mathcal{SP}s$ with LVMs

 \bullet A systematical revisit to $\mathcal{SP}s$ with an Implicit Latent Variable Model

- \blacktriangleright conceptualization of latent \mathcal{SP} models
- comprehension about SPs with LVMs
- \bullet A novel exchangeable \mathcal{SP} within a Hierarchical Bayesian Framework
 - \blacktriangleright formalization of a hierarchical \mathcal{SP}
 - plausible approximate inference method

 \bullet A systematical revisit to $\mathcal{SP}s$ with an Implicit Latent Variable Model

- \blacktriangleright conceptualization of latent \mathcal{SP} models
- comprehension about SPs with LVMs
- \bullet A novel exchangeable \mathcal{SP} within a Hierarchical Bayesian Framework
 - \blacktriangleright formalization of a hierarchical \mathcal{SP}
 - plausible approximate inference method
- Competitive performance on extensive Uncertainty-aware Applications
 - high dimensional regressions on simulators/real-world dataset
 - classification and o.o.d. detection on image dataset

- 1 Motivation for $\mathcal{SP}s$
- **2** Study of $\mathcal{SP}s$ with LVMs
- 3 NP with Hierarchical Latent Variables
- Experiments and Applications

Motivation for $\mathcal{SP}s$

The stochastic process (SP) is a math tool to describe the distribution over functions. (Fig. refers to [1])

The stochastic process (SP) is a math tool to describe the distribution over functions. (Fig. refers to [1])

The stochastic process (SP) is a math tool to describe the distribution over functions. (Fig. refers to [1])

• Flexible to handle correlations among samples : significant for non-*i.i.d.* dataset ;

The stochastic process (SP) is a math tool to describe the distribution over functions. (Fig. refers to [1])

- Flexible to handle correlations among samples : significant for non-*i.i.d.* dataset ;
- Quantify uncertainty in risk-sensitive applications : e.g. forecast $p(s_{t+1}|s_t, a_t)$ in autonomous driving [2];

The stochastic process (SP) is a math tool to describe the distribution over functions. (Fig. refers to [1])

- Flexible to handle correlations among samples : significant for non-*i.i.d.* dataset ;
- Quantify uncertainty in risk-sensitive applications : *e.g.* forecast $p(s_{t+1}|s_t, a_t)$ in autonomous driving [2];
- Model distributions instead of point estimates : working as a *generative model* for more realizations [3].

Two Consistencies in Exchangeable $\mathcal{SP}s$

Some required properties for exchangeable stochastic process ρ [4] :

Two Consistencies in Exchangeable $\mathcal{SP}s$

Some required properties for exchangeable stochastic process ρ [4] :

• **Marginalization Consistency.** For any finite collection of random variables $\{y_1, y_2, \ldots, y_{N+M}\}$, the probability after *marginalization* over subset is unchanged.

$$\int \rho_{x_{1:N+M}}(y_{1:N+M}) dy_{N+1:N+M} = \rho_{x_{1:N}}(y_{1:N})$$
(1.1)

• Exchangeability Consistency. Any random *permutation* over set of variables does not influence joint probability.

$$\rho_{x_{1:N}}(y_{1:N}) = \rho_{x_{\pi(1:N)}}(y_{\pi(1:N)})$$
(1.2)

Some required properties for exchangeable stochastic process ρ [4] :

• **Marginalization Consistency.** For any finite collection of random variables $\{y_1, y_2, \ldots, y_{N+M}\}$, the probability after *marginalization* over subset is unchanged.

$$\int \rho_{x_{1:N+M}}(y_{1:N+M}) dy_{N+1:N+M} = \rho_{x_{1:N}}(y_{1:N})$$
(1.1)

• Exchangeability Consistency. Any random *permutation* over set of variables does not influence joint probability.

$$\rho_{x_{1:N}}(y_{1:N}) = \rho_{x_{\pi(1:N)}}(y_{\pi(1:N)})$$
(1.2)

With these two conditions, an exchangeable SP can be induced. (Refer to Kolmogorov Extension Theorem)

Crucial properties for $\mathcal{SP}s$:

• Scalability in large-scale dataset:

Analysis on GPs/NPs :

• Gaussian Processes (GPs)

• Flexibility in distributions:

• Neural Processes (NPs)

• Extension to high dimensions:

Crucial properties for $\mathcal{SP}s$:

- Scalability in large-scale dataset:

 → Optimization/Computational bottleneck
- Flexibility in distributions:

• Extension to high dimensions:

Analysis on GPs/NPs :

• Gaussian Processes (GPs)

Crucial properties for $\mathcal{SP}s$:

- Scalability in large-scale dataset:

 → Optimization/Computational bottleneck
- Flexibility in distributions:
 - \rightarrow Non-Gaussian or Multi-modal property
- Extension to high dimensions:

Analysis on GPs/NPs :

• Gaussian Processes (GPs)

Crucial properties for $\mathcal{SP}s$:

- Scalability in large-scale dataset:

 → Optimization/Computational bottleneck
- Flexibility in distributions:
 - \rightarrow Non-Gaussian or Multi-modal property
- Extension to high dimensions:
 → Correlations among or across Input/Output

Analysis on GPs/NPs :

• Gaussian Processes (GPs)

- Scalability in large-scale dataset:

 → Optimization/Computational bottleneck
- Flexibility in distributions:
 - \rightarrow Non-Gaussian or Multi-modal property
- Extension to high dimensions:
 → Correlations among or across Input/Output

Analysis on GPs/NPs :

- Gaussian Processes (GPs)
 - ightarrow less scalable with computational complexity $\mathcal{O}(N^3)$

- Scalability in large-scale dataset:
 → Optimization/Computational
 bottleneck
- Flexibility in distributions:
 - \rightarrow Non-Gaussian or Multi-modal property
- Extension to high dimensions:
 → Correlations among or across Input/Output

Analysis on GPs/NPs :

• Gaussian Processes (GPs)

 \rightarrow less scalable with computational complexity $\mathcal{O}(N^3)$

- \rightarrow less flexible with Gaussian distributions
- Neural Processes (NPs)

- Scalability in large-scale dataset:

 → Optimization/Computational bottleneck
- Flexibility in distributions:
 - \rightarrow Non-Gaussian or Multi-modal property
- Extension to high dimensions:
 → Correlations among or across Input/Output

Analysis on GPs/NPs :

- Gaussian Processes (GPs)
 - ightarrow less scalable with computational complexity $\mathcal{O}(N^3)$
 - \rightarrow less flexible with Gaussian distributions
- Neural Processes (NPs)
 → more scalable with computational complexity O(N)

- Scalability in large-scale dataset:

 → Optimization/Computational bottleneck
- Flexibility in distributions:
 - \rightarrow Non-Gaussian or Multi-modal property
- Extension to high dimensions:
 → Correlations among or across Input/Output

Analysis on GPs/NPs :

- Gaussian Processes (GPs)
 - \rightarrow less scalable with computational complexity $\mathcal{O}(N^3)$
 - \rightarrow less flexible with Gaussian distributions
- Neural Processes (NPs)

 → more scalable with computational complexity O(N)
 → more flexible with no explicit distributions

Study of $\mathcal{SP}s$ with LVMs

Deep Latent Variable Model as SPs

Here we present an implicit Latent Variable Model for $\mathcal{SP}s$:

• Generation paradigm with (potentially correlated) latent variables :

• Predictive distribution in SPs: Let the *context* and *target input* be $C = \{(x_i, y_i) | i = 1, 2, ..., N\}$ and x_T , the computation is

(2.3)

mostly intractable.

Deep Latent Variable Model as $\mathcal{SP}s$

Here we present an implicit Latent Variable Model for $\mathcal{SP}s$:

• Generation paradigm with (potentially correlated) latent variables :

• Predictive distribution in SPs: Let the *context* and *target input* be $C = \{(x_i, y_i) | i = 1, 2, ..., N\}$ and x_T , the computation is

(2.3)

(2.1)

mostly intractable.

Deep Latent Variable Model as $\mathcal{SP}s$

Here we present an implicit Latent Variable Model for $\mathcal{SP}s$:

• Generation paradigm with (potentially correlated) latent variables :

• Predictive distribution in SPs: Let the *context* and *target input* be $C = \{(x_i, y_i) | i = 1, 2, ..., N\}$ and x_T , the computation is

(2.3)

(2.1)

(2.2)

mostly intractable.

Deep Latent Variable Model as SPs

Here we present an implicit Latent Variable Model for $\mathcal{SP}s$:

• Generation paradigm with (potentially correlated) latent variables :

• Predictive distribution in SPs: Let the *context* and *target input* be $C = \{(x_i, y_i) | i = 1, 2, ..., N\}$ and x_T , the computation is

$$p_{\theta}(z_{T}|x_{C}, y_{C}, x_{T}) = \frac{p(z_{C}, z_{T})}{\int p(z_{C}, z_{T}) dz_{C}},$$
(2.3)

mostly intractable.

(2.1)

(2.2)

Deep Latent Variable Model as SPs

Here we present an implicit Latent Variable Model for $\mathcal{SP}s$:

• Generation paradigm with (potentially correlated) latent variables :

• Predictive distribution in SPs: Let the *context* and *target input* be $C = \{(x_i, y_i) | i = 1, 2, ..., N\}$ and x_T , the computation is

$$p_{\theta}(z_{T}|x_{C}, y_{C}, x_{T}) = \frac{p(z_{C}, z_{T})}{\int p(z_{C}, z_{T}) dz_{C}}, \quad y_{T} \sim p(y_{T}|x_{T}, z_{T}, \zeta)$$
(2.3)

mostly intractable.

(2.1)

(2.2)

NP family approximates $\mathcal{SP}s$ in the form of LVMs :

 $\bullet \ \mathcal{GP}$ as an exchangeable \mathcal{SP} with latent variables :

 \bullet NP as an exchangeable \mathcal{SP} with a global latent variable :

NP family approximates $\mathcal{SP}s$ in the form of LVMs :

 $\bullet \ \mathcal{GP}$ as an exchangeable \mathcal{SP} with latent variables :

$$\rho_{x}(y) = \int \mathcal{N}(y; z, \tau^{-1}\mathcal{I}) \underbrace{\mathcal{N}(z; m(x), \mathcal{K}(., .))}_{\text{I.v.}} dz$$

 \bullet NP as an exchangeable \mathcal{SP} with a global latent variable :

(2.4)

NP family approximates $\mathcal{SP}s$ in the form of LVMs :

 $\bullet \ \mathcal{GP}$ as an exchangeable \mathcal{SP} with latent variables :

$$\rho_{x}(y) = \int \mathcal{N}(y; z, \tau^{-1}\mathcal{I}) \underbrace{\mathcal{N}(z; m(x), \mathcal{K}(., .))}_{\text{l.v.}} dz \qquad (2.4)$$

 \bullet NP as an exchangeable \mathcal{SP} with a global latent variable :

$$\rho_{X_{1:N+M}}(y_{1:N+M}) = \int \prod_{i=1}^{N+M} \underbrace{p(y_i|x_i, z_G)}_{\text{trans.}} \underbrace{p(z_G)}_{\text{global l.v.}} dz_G$$
(2.5)

NP family approximates $\mathcal{SP}s$ in the form of LVMs :

 $\bullet \ \mathcal{GP}$ as an exchangeable \mathcal{SP} with latent variables :

$$\rho_{x}(y) = \int \mathcal{N}(y; z, \tau^{-1}\mathcal{I}) \underbrace{\mathcal{N}(z; m(x), \mathcal{K}(., .))}_{\text{I.v.}} dz \qquad (2.4)$$

 \bullet NP as an exchangeable \mathcal{SP} with a global latent variable :

$$\rho_{x_{1:N+M}}(y_{1:N+M}) = \int \prod_{i=1}^{N+M} \underbrace{p(y_i|x_i, z_G)}_{\text{trans.}} \underbrace{p(z_G)}_{\text{global l.v.}} dz_G$$
(2.5)

Remark

Some other models, such as Hierarchical $\mathcal{GP}s$ [5] and Deep $\mathcal{GP}s$ [6], [7] can also be expressed with LVMs.

A general ELBO with a context prior in NP models [1] :

Statistics of the context invariant to the order in set instances, such as pooling of element-wise embeddings :

A general ELBO with a context prior in NP models [1] :

$$\ln \left[p(y_T | x_C, y_C, x_T) \right] \ge \mathbb{E}_{q_{\phi}} \ln \left[\underbrace{p_{\theta}(y_T | x_T, z_G)}_{data \ likelihood} \right]$$
$$-D_{\mathcal{KL}} \left(\underbrace{q_{\phi}(z_G | x_C, y_C, x_T, y_T)}_{global \ posterior} \| \underbrace{p(z_G | x_C, y_C)}_{global \ prior} \right)$$

Statistics of the context invariant to the order in set instances, such as pooling of element-wise embeddings :

(2.6)

A general ELBO with a context prior in NP models [1] :

$$\ln \left[p(y_T | x_C, y_C, x_T) \right] \ge \mathbb{E}_{q_{\phi}} \ln \left[\underbrace{p_{\theta}(y_T | x_T, z_G)}_{data \ likelihood} - D_{KL} \left(\underbrace{q_{\phi}(z_G | x_C, y_C, x_T, y_T)}_{global \ posterior} \right) \| \underbrace{p(z_G | x_C, y_C)}_{global \ prior}$$

Statistics of the context invariant to the order in set instances, such as pooling of element-wise embeddings :

(2.6)

A general ELBO with a context prior in NP models [1] :

$$n \left[p(y_T | x_C, y_C, x_T) \right] \ge \mathbb{E}_{q_{\phi}} \ln \left[\underbrace{p_{\theta}(y_T | x_T, z_G)}_{data \ likelihood} \right] - D_{\mathcal{KL}} \left(\underbrace{q_{\phi}(z_G | x_C, y_C, x_T, y_T)}_{global \ posterior} \parallel \underbrace{p(z_G | x_C, y_C)}_{global \ prior} \right)$$

Statistics of the context invariant to the order in set instances, such as pooling of element-wise embeddings :

$$r_i = h_{\theta}(x_i, y_i), \quad r = \bigoplus_{i=1}^{N} r_i, \quad p_{\theta}(z_C | x_C, y_C) = \mathcal{N}(z_C | [f_{\mu}(r), f_{\sigma}(r)])$$
(2.7)

37 / 69

(2.6)

NPs with Hierarchical Latent Variables

Our work starts with motivations:

• Hierarchical Bayesian structures \rightarrow more expressiveness.

Our work starts with motivations:

- \bullet Hierarchical Bayesian structures \rightarrow more expressiveness.
- Involving local I.v. \rightarrow reveal local dependencies across input/output in high-dim cases.

Our work starts with motivations:

- \bullet Hierarchical Bayesian structures \rightarrow more expressiveness.
- Involving local l.v. \rightarrow reveal local dependencies across input/output in high-dim cases.

As a result, a hierarchical LVM is induced as Doubly Stochastic Variational Neural Process (DSVNP):

Our work starts with motivations:

- \bullet Hierarchical Bayesian structures \rightarrow more expressiveness.
- Involving local l.v. \rightarrow reveal local dependencies across input/output in high-dim cases.

As a result, a hierarchical LVM is induced as Doubly Stochastic Variational Neural Process (DSVNP):

$$\rho_{x_{1:N+M}}(y_{1:N+M}) = \iint \prod_{i=1}^{N+M} p(y_i | z_G, z_i, x_i)$$

$$p(z_i | x_i, z_G) p(z_G) dz_{1:N+M} dz_G$$
(3.1)

Our work starts with motivations:

- \bullet Hierarchical Bayesian structures \rightarrow more expressiveness.
- Involving local l.v. \rightarrow reveal local dependencies across input/output in high-dim cases.

As a result, a hierarchical LVM is induced as Doubly Stochastic Variational Neural Process (DSVNP):

$$\rho_{x_{1:N+M}}(y_{1:N+M}) = \iint \prod_{i=1}^{N+M} p(y_i | z_G, z_i, x_i)$$

$$p(z_i | x_i, z_G) p(z_G) dz_{1:N+M} dz_G$$
(3.1)

Remark

DSVNP satisfies Marginalization and Exchangeability Consistencies, so it is a new exchangeable \mathcal{SP} .

Approximate Inference for DSVNP

Exact inference for this hierarchical LVM is mostly intractable, hence approximate inference is used here.

• Evidence Lower Bound for DSVNP :

• Generative (Black Lines) and Recognition Models (Blue/Pink Lines) in Graphs : Specify generative process with black line

Approximate Inference for DSVNP

Exact inference for this hierarchical LVM is mostly intractable, hence approximate inference is used here.

• Evidence Lower Bound for DSVNP :

$$\ln \left[p(y_*|x_C, y_C, x_*) \right] \ge \mathbb{E}_{q_{\phi_{1,1}}} \mathbb{E}_{q_{\phi_{2,1}}} \ln [p(y_*|z_G, z_*, x_*)] \\
- \mathbb{E}_{q_{\phi_{1,1}}} [D_{KL}[q_{\phi_{2,1}}(z_*|z_G, x_*, y_*) \parallel p_{\phi_{2,2}}(z_*|z_G, x_*)]] \\
- D_{KL} [q_{\phi_{1,1}}(z_G|x_C, y_C, x_T, y_T) \parallel p_{\phi_{1,2}}(z_G|x_C, y_C)]$$
(3.2)

• Generative (Black Lines) and Recognition Models (Blue/Pink Lines) in Graphs : Specify generative process with black line

Approximate Inference for DSVNP

Exact inference for this hierarchical LVM is mostly intractable, hence approximate inference is used here.

• Evidence Lower Bound for DSVNP :

$$\ln \left[p(y_*|x_C, y_C, x_*) \right] \ge \mathbb{E}_{q_{\phi_{1,1}}} \mathbb{E}_{q_{\phi_{2,1}}} \ln[p(y_*|z_G, z_*, x_*)] \\
- \mathbb{E}_{q_{\phi_{1,1}}} \left[D_{\mathcal{K}L} [q_{\phi_{2,1}}(z_*|z_G, x_*, y_*) \parallel p_{\phi_{2,2}}(z_*|z_G, x_*)] \right] \\
- D_{\mathcal{K}L} \left[q_{\phi_{1,1}}(z_G|x_C, y_C, x_T, y_T) \parallel p_{\phi_{1,2}}(z_G|x_C, y_C) \right]$$
(3.2)

• Generative (Black Lines) and Recognition Models (Blue/Pink Lines) in Graphs : Specify generative process with black line

Similar to that in NPs, DSVNP is trained in a SGVB way [8].

• Scalable training with random context points :

• Testing/Forecasting with priors and Monte Carlo estimates :

Similar to that in NPs, DSVNP is trained in a SGVB way [8].

• Scalable training with random context points :

```
\begin{split} & \textbf{Algorithm 1} \text{ Variational Inference for DSVNP in Training.} \\ & \textbf{Input: Dataset } \mathcal{D} = \{x_C, y_C; x_T, y_T\}, \text{Maximum context points } N_{max}, \text{ etc.} \\ & \textbf{Output: Model parameters } \phi_1, \phi_2 \text{ and } \theta. \\ & \textbf{for } i = 1 \text{ to } m \text{ do} \\ & \textbf{Draw some context number } N_C \sim U[1, N_{max}]; \\ & \textbf{Draw mini-batch pair instances } \{(x_C, y_C, x_T, y_T)_b\}_{b=1}^B \sim \mathcal{D}; \\ & \text{Feedforward instances to recognition model } q_{\phi_1}; \\ & \text{Feedforward instances to generative model } p_{\theta}; \\ & \textbf{Update parameters by Optimizing Eq. (12):} \\ & \phi_1 \leftarrow \phi_1 + \alpha \nabla_{\phi_1} \mathcal{L}_{AC} \supset \phi_1 = [\phi_{1,1}, \phi_{1,2}] \\ & \phi_2 \leftarrow \phi_2 + \alpha \nabla_{\phi_2} \mathcal{L}_{MC} \supset \phi_1 = [\phi_{2,1}, \phi_{2,2}] \\ & \theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_{MC} \end{split}
```

• Testing/Forecasting with priors and Monte Carlo estimates :

Similar to that in NPs, DSVNP is trained in a SGVB way [8].

• Scalable training with random context points :

$$\begin{split} & \textbf{Algorithm 1} \text{ Variational Inference for DSVNP in Training.} \\ & \textbf{Input: Dataset } \mathcal{D} = \{x_C, y_C; x_T, y_T\}, \text{ Maximum context points } N_{max}, \text{etc.} \\ & \textbf{Output: Model parameters } \phi_1, \phi_2 \text{ and } \theta. \\ & \textbf{for } i = 1 \text{ to } m \text{ do} \\ & \textbf{Draw some context number } N_C \sim U[1, N_{max}]; \\ & \textbf{Draw mini-batch pair instances } \{(x_C, y_C, x_T, y_T)_{bs}\}_{b=1}^B \sim \mathcal{D}; \\ & \text{Feedforward instances to recognition model } q_{\phi_1}; \\ & \text{Feedforward instances by Optimizing Eq. (12):} \\ & \phi_1 \leftarrow \phi_1 + \alpha \, \nabla_{\phi_1} \mathcal{L}_{AC} \subset \phi_1 = [\phi_{1,1}, \phi_{1,2}] \\ & \phi_2 \leftarrow \phi_2 + \alpha \nabla_{\phi_2} \mathcal{L}_{AC} \supset \phi_1 = [\phi_{2,1}, \phi_{2,2}] \\ & \theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_{AC} \end{aligned}$$

• Testing/Forecasting with priors and Monte Carlo estimates :

$$p(y_*|x_C, y_C, x_*) \approx \frac{1}{KS} \sum_{k=1}^K \sum_{s=1}^S p_\theta(y_*|x_*, z_*^{(s)}, z_G^{(k)})$$
(3.3)

Similar to that in NPs, DSVNP is trained in a SGVB way [8].

• Scalable training with random context points :

$$\begin{split} & \textbf{Algorithm 1 Variational Inference for DSVNP in Training.} \\ & \textbf{Input: Dataset } \mathcal{D} = \{x_C, y_C; x_T, y_T\}, \text{Maximum context points } N_{max}, \text{etc.} \\ & \textbf{Output: Model parameters } \phi_1, \phi_2 \text{ and } \theta. \\ & \textbf{for } i = 1 \text{ to } m \text{ do} \\ & \textbf{Draw some context number } N_C \sim U[1, N_{max}]; \\ & \textbf{Draw mini-batch pair instances } \{(x_C, y_C, x_T, y_T)_{b_8}\}_{b=1}^B \sim \mathcal{D}; \\ & \text{Feedforward instances to recognition model } q_{\phi_1}; \\ & \text{Feedforward instances to generative model } p_{\theta}; \\ & \textbf{Update parameters by Optimizing Eq. (12):} \\ & \phi_1 \leftarrow \phi_1 + \alpha \nabla_{\phi_1} \mathcal{L}_{AC} \supset \phi_1 = [\phi_{1,1}, \phi_{1,2}] \\ & \phi_2 \leftarrow \phi_2 + \alpha \nabla_{\phi_2} \mathcal{L}_{AC} \supset \phi_1 = [\phi_{2,1}, \phi_{2,2}] \\ & \theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_{AC} \\ & \textbf{end for} \end{split}$$

• Testing/Forecasting with priors and Monte Carlo estimates :

$$p(y_*|x_C, y_C, x_*) \approx \frac{1}{KS} \sum_{k=1}^K \sum_{s=1}^S p_\theta(y_*|x_*, z_*^{(s)}, z_G^{(k)})$$
(3.3)

using latent variables sampled in prior networks as $z_G^{(k)} \sim p_{\phi_{1,2}}(z_G|x_C, y_C)$ and $z_*^{(s)} \sim p_{\phi_{2,2}}(z_*|z_G^{(k)}, x_*)$.

Experiments and Applications

Discoveries in 1-D Simulation Experiments in terms of fitting errors and uncertainty quantification (UQ) :

• Episdemic uncertainty in a single curve :

• Interpolation in curves of a SP:

• Extrapolation in curves of a \mathcal{SP} :

Discoveries in 1-D Simulation Experiments in terms of fitting errors and uncertainty quantification (UQ) :

- Episdemic uncertainty in a single curve : NP/AttnNP \rightarrow over-confident in some regions
- Interpolation in curves of a \mathcal{SP} :

• Extrapolation in curves of a \mathcal{SP} :

Discoveries in 1-D Simulation Experiments in terms of fitting errors and uncertainty quantification (UQ) :

- Episdemic uncertainty in a single curve : NP/AttnNP \rightarrow over-confident in some regions
- Interpolation in curves of a SP: AttnNP ≻ DSVNP ≻ NP ≻ CNP (Fitting/UQ Performance)
- Extrapolation in curves of a \mathcal{SP} :

Table 2. Average Negative Log-likelihoods over all target points on realizations from Synthetic Stochastic Process. (Figures in brackets are variances.)

PREDICTION	CNP	NP	ATTNNP	DSVNP
INTER	-0.802	-0.958	-1.149	-0.975
	(1E-6)	(2E-5)	(8E-6)	(2E-5)
Extra	1.764	8.192	8.091	4.203
	(1E-1)	(7E1)	(7E2)	(9E0)

Discoveries in 1-D Simulation Experiments in terms of fitting errors and uncertainty quantification (UQ) :

- Episdemic uncertainty in a single curve : NP/AttnNP \rightarrow over-confident in some regions
- Interpolation in curves of a SP: AttnNP ≻ DSVNP ≻ NP ≻ CNP (Fitting/UQ Performance)
- Extrapolation in curves of a SP: Tough for all in fitting; NP/AttnNP → over-confident; DSVNP → better UQ

Table 2. Average Negative Log-likelihoods over all target points on realizations from Synthetic Stochastic Process. (Figures in brackets are variances.)

PREDICTION	CNP	NP	ATTNNP	DSVNP
INTER	-0.802	-0.958	-1.149	-0.975
	(1E-6)	(2E-5)	(8E-6)	(2E-5)
Extra	1.764	8.192	8.091	4.203
	(1E-1)	(7E1)	(7E2)	(9E0)

Investigations on (1) system identification on cart-pole transitions [9]; (2) regression on real-world dataset :

• System identification :

• High-dim regression :

Investigations on (1) system identification on cart-pole transitions [9]; (2) regression on real-world dataset :

• System identification :

• High-dim regression :

Investigations on (1) system identification on cart-pole transitions [9]; (2) regression on real-world dataset :

• System identification :

MSE & NLL not in accordance; DSVNP & CNP \rightarrow better UQ; DSVNP & AttnNP

- \rightarrow lower fitting error.
- High-dim regression :

Table 3. Predictive Negative Log-Likelihoods and Mean Square Errors on Cart-Pole State Transition Testing Dataset. (Figures in brackets are variances.)

METRICS	CNP	NP	ATTNNP	DSVNP
NLL	-2.014	-1.537	-1.821	-2.145
	(9E-4)	(1E-3)	(7E-3)	(9E-4)
MSE	0.096	0.074	0.067	0.036
	(3E-4)	(2E-4)	(1E-4)	(2.1E-5)

Investigations on (1) system identification on cart-pole transitions [9]; (2) regression on real-world dataset :

• System identification :

MSE & NLL not in accordance; DSVNP & CNP \rightarrow better UQ: DSVNP & AttnNP

- \rightarrow lower fitting error.
- High-dim regression : Hierarchical latent variables advance performance significantly.

METRICS	CNP	NP	ATTNNP	DSVNP
NLL	-2.014	-1.537	-1.821	-2.145
	(9E-4)	(1E-3)	(7E-3)	(9E-4)
MSE	0.096	0.074	0.067	0.036
	(3E-4)	(2E-4)	(1E-4)	(2.1E-5)

Table 4. Predictive MSEs on Multi-Output Dataset. CNP's results are for target points. D records (input,output) dimensions, and N is the number of samples. MC-Dropout runs 50 stochastic forward propagation and average results for prediction in each data point. (Figures in brackets are variances.)

DATASET	N	D	MC-DROPOUT	CNP	NP	AttnNP	DSVNP
Sarcos	48933	(21,7)	1.215(3E-3)	1.437(2.9E-2)	1.285(1.2E-1)	1.362(8.4E-2)	0.839(1.5E-2)
WQ	1060	(16,14)	0.007(9.6E-8)	0.015(2.4E-5)	0.007(5.2E-6)	0.01(8.5E-6)	0.006(1.6E-6)
SCM20d	8966	(61,16)	0.017(2.4E-7)	0.037(6.7E-5)	0.015(7.1E-8)	0.015(8.1E-7)	0.007(2.3E-7)

Classification with Uncertainty Quantification

Observations in image classification and out of distribution detection (based on cumulative distribution of entropies) :

Classification with Uncertainty Quantification

Observations in image classification and out of distribution detection (based on cumulative distribution of entropies) :

• MNIST: no significant difference in classification performance/o.o.d detection (all above 99%) ; DSVNP \rightarrow better o.o.d. detection on FMNIST/KMNIST ; MC-D more robust to Gaussian/Uniform noise.

Classification with Uncertainty Quantification

Observations in image classification and out of distribution detection (based on cumulative distribution of entropies) :

- MNIST: no significant difference in classification performance/o.o.d detection (all above 99%) ; DSVNP \rightarrow better o.o.d. detection on FMNIST/KMNIST ; MC-D more robust to Gaussian/Uniform noise.
- CIFAR10: DSVNP(86.3%) ≻ MC/CNP ≻ AttnNP/NP ≻ NN (Classification Performance) ; DSVNP → best entropy distributions in domain dataset and most robust to Rademacher noise.

Future Works

 \bullet More effective inference methods for our proposed hierarchical $\mathcal{SP}s$

- \bullet More effective inference methods for our proposed hierarchical $\mathcal{SP}s$
- More expressive context latent variable using higher order statistics

- \bullet More effective inference methods for our proposed hierarchical $\mathcal{SP}s$
- More expressive context latent variable using higher order statistics
- More explorations to Uncertainty-aware Decision-making Problems

Thanks for Your Listening

- M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. Eslami, and Y. W. Teh, "Neural processes," *arXiv preprint arXiv:1807.01622*, 2018.
- M. Deisenroth and C. E. Rasmussen, "Pilco: A model-based and data-efficient approach to policy search," in *Proceedings of the 28th International Conference on machine learning (ICML-11)*, 2011, pp. 465–472.
- F. P. Casale, A. Dalca, L. Saglietti, J. Listgarten, and N. Fusi, "Gaussian process prior variational autoencoders," in *Advances in Neural Information Processing Systems*, 2018, pp. 10369–10380.
- D. Heath and W. Sudderth, "De finetti's theorem on exchangeable variables," *The American Statistician*, vol. 30, no. 4, pp. 188–189, 1976.
- S. Park and S. Choi, "Hierarchical gaussian process regression," in *Proceedings of 2nd* Asian Conference on Machine Learning, 2010, pp. 95–110.
- A. Damianou and N. Lawrence, "Deep gaussian processes," in *Artificial Intelligence and Statistics*, 2013, pp. 207–215.
- Z. Dai, A. Damianou, J. González, and N. Lawrence, "Variational auto-encoded deep gaussian processes," *arXiv preprint arXiv:1511.06455*, 2015.

D. P. Kingma and M. Welling, "Auto-encoding variational bayes," *arXiv preprint arXiv:1312.6114*, 2013.

Y. Gal, R. McAllister, and C. E. Rasmussen, "Improving pilco with bayesian neural network dynamics models," in *Data-Efficient Machine Learning workshop, ICML*, vol. 4, 2016, p. 34.