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Highlights in this Work

A systematical revisit to SPs with an Implicit Latent Variable Model
I conceptualization of latent SP models
I comprehension about SPs with LVMs

A novel exchangeable SP within a Hierarchical Bayesian Framework
I formalization of a hierarchical SP
I plausible approximate inference method

Competitive performance on extensive Uncertainty-aware Applications
I high dimensional regressions on simulators/real-world dataset
I classification and o.o.d. detection on image dataset

2 / 69



Highlights in this Work

A systematical revisit to SPs with an Implicit Latent Variable Model
I conceptualization of latent SP models
I comprehension about SPs with LVMs

A novel exchangeable SP within a Hierarchical Bayesian Framework
I formalization of a hierarchical SP
I plausible approximate inference method

Competitive performance on extensive Uncertainty-aware Applications
I high dimensional regressions on simulators/real-world dataset
I classification and o.o.d. detection on image dataset

3 / 69



Highlights in this Work

A systematical revisit to SPs with an Implicit Latent Variable Model
I conceptualization of latent SP models
I comprehension about SPs with LVMs

A novel exchangeable SP within a Hierarchical Bayesian Framework
I formalization of a hierarchical SP
I plausible approximate inference method

Competitive performance on extensive Uncertainty-aware Applications
I high dimensional regressions on simulators/real-world dataset
I classification and o.o.d. detection on image dataset

4 / 69



Highlights in this Work

A systematical revisit to SPs with an Implicit Latent Variable Model
I conceptualization of latent SP models
I comprehension about SPs with LVMs

A novel exchangeable SP within a Hierarchical Bayesian Framework
I formalization of a hierarchical SP
I plausible approximate inference method

Competitive performance on extensive Uncertainty-aware Applications
I high dimensional regressions on simulators/real-world dataset
I classification and o.o.d. detection on image dataset

5 / 69



Outline of this Talk

1 Motivation for SPs

2 Study of SPs with LVMs

3 NP with Hierarchical Latent Variables

4 Experiments and Applications

6 / 69



Motivation for SPs
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Why Do We Need Stochastic Processes?

The stochastic process (SP) is a math tool to describe the distribution over functions. (Fig.
refers to [1])

Flexible to handle correlations among samples : significant for non-i.i.d. dataset ;

Quantify uncertainty in risk-sensitive applications : e.g. forecast p(st+1|st , at) in
autonomous driving [2] ;

Model distributions instead of point estimates : working as a generative model for more
realizations [3].
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Two Consistencies in Exchangeable SPs

Some required properties for exchangeable stochastic process ρ [4] :

Marginalization Consistency. For any finite collection of random variables
{y1, y2, . . . , yN+M}, the probability after marginalization over subset is unchanged.∫

ρx1:N+M
(y1:N+M)dyN+1:N+M = ρx1:N (y1:N) (1.1)

Exchangeability Consistency. Any random permutation over set of variables does not
influence joint probability.

ρx1:N (y1:N) = ρxπ(1:N)
(yπ(1:N)) (1.2)

With these two conditions, an exchangeable SP can be induced. (Refer to Kolmogorov
Extension Theorem)
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SPs in Progress and Primary Concerns

Crucial properties for SPs :

Scalability in large-scale dataset:

→ Optimization/Computational
bottleneck

Flexibility in distributions:

→ Non-Gaussian or Multi-modal property

Extension to high dimensions:

→ Correlations among or across
Input/Output

Analysis on GPs/NPs :

Gaussian Processes (GPs)

→ less scalable with computational
complexity O(N3)
→ less flexible with Gaussian distributions

Neural Processes (NPs)

→ more scalable with computational
complexity O(N)
→ more flexible with no explicit
distributions
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Study of SPs with LVMs

24 / 69



Deep Latent Variable Model as SPs

Here we present an implicit Latent Variable Model for SPs :

Generation paradigm with (potentially correlated) latent variables :

zi︸︷︷︸
index depend. l.v.

= φ(xi )︸ ︷︷ ︸
deter. term

+ ε(xi )︸︷︷︸
stoch. term

(2.1)

yi︸︷︷︸
obs.

= ϕ(xi , zi )︸ ︷︷ ︸
trans.

+ ζi︸︷︷︸
obs. noise

(2.2)

Predictive distribution in SPs : Let the context and target input be
C = {(xi , yi )|i = 1, 2, . . . ,N} and xT , the computation is

pθ(zT |xC , yC , xT ) =
p(zC , zT )∫
p(zC , zT )dzC

, yT ∼ p(yT |xT , zT , ζ)

(2.3)

mostly intractable.
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Gaussian Processes & Neural Processes

NP family approximates SPs in the form of LVMs :

GP as an exchangeable SP with latent variables :

ρx(y) =

∫
N (y ; z , τ−1I)N (z ;m(x),K(., .))︸ ︷︷ ︸

l.v.

dz (2.4)

NP as an exchangeable SP with a global latent variable :

ρx1:N+M
(y1:N+M) =

∫ N+M∏
i=1

p(yi |xi , zG )︸ ︷︷ ︸
trans.

p(zG )︸ ︷︷ ︸
global l.v.

dzG (2.5)

Remark

Some other models, such as Hierarchical GPs [5] and Deep GPs [6], [7] can also be expressed
with LVMs.
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Inference for Neural Processes

A general ELBO with a context prior in NP models [1] :

ln
[
p(yT |xC , yC , xT )

]
≥ Eqφ ln

[
pθ(yT |xT , zG )︸ ︷︷ ︸
data likelihood

]
−DKL

(
qφ(zG |xC , yC , xT , yT )︸ ︷︷ ︸

global posterior

‖ p(zG |xC , yC )︸ ︷︷ ︸
global prior

) (2.6)

Statistics of the context invariant to the order in set instances, such as pooling of
element-wise embeddings :

ri = hθ(xi , yi ), r =
N⊕
i=1

ri , pθ(zC |xC , yC ) = N (zC |[fµ(r), fσ(r)]) (2.7)

MLP

sampling

Permutation	Invariant	Encoder Decoder
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NPs with Hierarchical
Latent Variables
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Extending NPs from A Hierarchical Bayes Perspective

Our work starts with motivations:

Hierarchical Bayesian structures → more expressiveness.

Involving local l.v. → reveal local dependencies across input/output in high-dim cases.

As a result, a hierarchical LVM is induced as Doubly Stochastic Variational Neural Process
(DSVNP):

ρx1:N+M
(y1:N+M) =

∫∫ N+M∏
i=1

p(yi |zG , zi , xi )

p(zi |xi , zG )p(zG )dz1:N+MdzG

(3.1)

Remark

DSVNP satisfies Marginalization and Exchangeability Consistencies, so it is a new
exchangeable SP.
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Approximate Inference for DSVNP

Exact inference for this hierarchical LVM is mostly intractable, hence approximate inference is
used here.

Evidence Lower Bound for DSVNP :

ln
[
p(y∗|xC , yC , x∗)

]
≥ Eqφ1,1

Eqφ2,1
ln[p(y∗|zG , z∗, x∗)]

−Eqφ1,1
[DKL[qφ2,1(z∗|zG , x∗, y∗) ‖ pφ2,2(z∗|zG , x∗)]

]
−DKL

[
qφ1,1(zG |xC , yC , xT , yT ) ‖ pφ1,2(zG |xC , yC )

] (3.2)

Generative (Black Lines) and Recognition Models (Blue/Pink Lines) in Graphs : Specify
generative process with black line
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Evidence Lower Bound for DSVNP :

ln
[
p(y∗|xC , yC , x∗)

]
≥ Eqφ1,1

Eqφ2,1
ln[p(y∗|zG , z∗, x∗)]

−Eqφ1,1
[DKL[qφ2,1(z∗|zG , x∗, y∗) ‖ pφ2,2(z∗|zG , x∗)]

]
−DKL

[
qφ1,1(zG |xC , yC , xT , yT ) ‖ pφ1,2(zG |xC , yC )

] (3.2)

Generative (Black Lines) and Recognition Models (Blue/Pink Lines) in Graphs : Specify
generative process with black line
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Training and Testing in Practice

Similar to that in NPs, DSVNP is trained in a SGVB way [8].

Scalable training with random context points :

Testing/Forecasting with priors and Monte Carlo estimates :

p(y∗|xC , yC , x∗) ≈ 1

KS

K∑
k=1

S∑
s=1

pθ(y∗|x∗, z(s)∗ , z
(k)
G ) (3.3)

using latent variables sampled in prior networks as z
(k)
G ∼ pφ1,2(zG |xC , yC ) and

z
(s)
∗ ∼ pφ2,2(z∗|z(k)G , x∗).
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Experiments and Applications
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Toy Experiments

Discoveries in 1-D Simulation Experiments in terms of fitting errors and uncertainty
quantification (UQ) :

Episdemic uncertainty in a single curve :

NP/AttnNP → over-confident in some
regions

Interpolation in curves of a SP:

AttnNP � DSVNP � NP � CNP
(Fitting/UQ Performance)

Extrapolation in curves of a SP:

Tough for all in fitting; NP/AttnNP →
over-confident; DSVNP → better UQ

(a) CNP (b) NP (c) AttnNP (d) DSVNP
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Multi-output Regression: Simulation/Real-world Dataset

Investigations on (1) system identification on cart-pole transitions [9]; (2) regression on
real-world dataset :

System identification :

MSE & NLL not in accordance; DSVNP
& CNP → better UQ; DSVNP & AttnNP
→ lower fitting error.

High-dim regression :

Hierarchical latent variables advance
performance significantly.

Goal
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Classification with Uncertainty Quantification

Observations in image classification and out of distribution detection (based on cumulative
distribution of entropies) :

MNIST: no significant difference in classification performance/o.o.d detection (all above
99%) ; DSVNP → better o.o.d. detection on FMNIST/KMNIST ; MC-D more robust to
Gaussian/Uniform noise.
CIFAR10: DSVNP(86.3%) � MC/CNP � AttnNP/NP � NN (Classification
Performance) ; DSVNP → best entropy distributions in domain dataset and most robust
to Rademacher noise.
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Future Works
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Some Challenging and Promising Directions

More effective inference methods for our proposed hierarchical SPs

More expressive context latent variable using higher order statistics

More explorations to Uncertainty-aware Decision-making Problems
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