

イロト 不得 トイヨト イヨト

Projection-free Distributed Online Convex Optimization with $O(\sqrt{T})$ Communication Complexity

Yuanyu Wan¹, Wei-Wei Tu² and Lijun Zhang¹

¹Dept. of Computer Science and Technology, Nanjing University ²4Paradigm Inc., Beijing, China

ICML 2020

http://www.lambda.nju.edu.cn/wanyy Projection-free Distributed Online Learning

Introduction

- Background
- The Problem and Our Contributions

Our Algorithms

- D-BOCG for Full Information Setting
- D-BBCG for Bandit Setting

3 Experiments

★ 글 ▶ ★ 글

Introduction

- Background
- The Problem and Our Contributions

Our Algorithms
 D-BOCG for Full Information Setting
 D-BBCG for Bandit Setting

3 Experiments

Conclusion

・ 回 ト ・ ヨ ト ・ ヨ ト

- Background
- The Problem and Our Contributions

Our Algorithms
 D-BOCG for Full Information Setting
 D-BBCG for Bandit Setting

3 Experiments

4 Conclusion

・ 回 ト ・ ヨ ト ・ ヨ ト

- Formal definition
- 1: for t = 1, 2, ..., T do
- 2: for each local learner $i \in [n]$ do
- 3: pick a decision $\mathbf{x}_i(t) \in \mathcal{K}$ receive a convex loss function $f_{t,i}(\mathbf{x}) : \mathcal{K} \to \mathbb{R}$
- 4: communicate with its neighbors and update $\mathbf{x}_i(t)$
- 5: end for
- 6: end for

伺き くきき くきき

Formal definition

1: for
$$t = 1, 2, ..., T$$
 do

- 2: for each local learner $i \in [n]$ do
- 3: pick a decision $\mathbf{x}_i(t) \in \mathcal{K}$ receive a convex loss function $f_{t,i}(\mathbf{x}) : \mathcal{K} \to \mathbb{R}$
- 4: communicate with its neighbors and update $\mathbf{x}_i(t)$
- 5: end for

6: end for

- the network is defined as G = (V, E), V = [n]
- each node $i \in [n]$ is a local learner
- node i can only communicate with its immediate neighbors

$$N_i = \{j \in V | (i,j) \in E\}$$

• the global loss function is defined as $f_t(\mathbf{x}) = \sum_{j=1}^n f_{t,j}(\mathbf{x})$

<ロト < 同ト < 回ト < 回)

Formal definition

1: for
$$t = 1, 2, ..., T$$
 do

- 2: for each local learner $i \in [n]$ do
- 3: pick a decision $\mathbf{x}_i(t) \in \mathcal{K}$ receive a convex loss function $f_{t,i}(\mathbf{x}) : \mathcal{K} \to \mathbb{R}$
- 4: communicate with its neighbors and update $\mathbf{x}_i(t)$
- 5: end for
- 6: end for
- Regret of local learner i

$$R_{T,i} = \sum_{t=1}^{T} f_t(\mathbf{x}_i(t)) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x})$$

伺 とく ヨ とく ヨ と

Formal definition

1: for
$$t = 1, 2, ..., T$$
 do

- 2: for each local learner $i \in [n]$ do
- 3: pick a decision $\mathbf{x}_i(t) \in \mathcal{K}$ receive a convex loss function $f_{t,i}(\mathbf{x}) : \mathcal{K} \to \mathbb{R}$
- 4: communicate with its neighbors and update $\mathbf{x}_i(t)$
- 5: end for
- 6: end for
- Regret of local learner i

$$R_{T,i} = \sum_{t=1}^{T} f_t(\mathbf{x}_i(t)) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x})$$

Applications

- multi-agent coordination
- distributed tracking in sensor networks

伺 とく ヨ とく ヨ と

Projection-based Methods

Distributed Online Dual Averaging [Hosseini et al., 2013]

- 1: for each local learner $i \in [n]$ do
- 2: Play $\mathbf{x}_i(t)$ and compute $\mathbf{g}_i(t) = \nabla f_{t,i}(\mathbf{x}_i(t))$
- 3: $\mathbf{z}_i(t+1) = \sum_{j \in N_i} P_{ij} \mathbf{z}_j(t) + \mathbf{g}_i(t)$
- 4: $\mathbf{x}_i(t+1) = \Pi^{\psi}_{\mathcal{K}}(\mathbf{z}_i(t+1), \alpha(t))$

5: end for

- *P_{ij}* > 0 only if (*i*, *j*) ∈ *E* or *P_{ij}* = 0
- $\psi(\mathbf{x}) : \mathcal{K} \to \mathbb{R}$ is a proximal function, e.g., $\psi(\mathbf{x}) = \|\mathbf{x}\|_2^2$
- projection step: $\Pi^{\psi}_{\mathcal{K}}(\mathbf{z}, \alpha) = \operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} \mathbf{z}^{\top} \mathbf{x} + \frac{1}{\alpha} \psi(\mathbf{x})$

•
$$\alpha(t) = O(1/\sqrt{t}) \rightarrow R_{T,i} = O(\sqrt{T})$$

Projection-based Methods

Distributed Online Dual Averaging [Hosseini et al., 2013]

- 1: for each local learner $i \in [n]$ do
- 2: Play $\mathbf{x}_i(t)$ and compute $\mathbf{g}_i(t) = \nabla f_{t,i}(\mathbf{x}_i(t))$
- 3: $\mathbf{z}_i(t+1) = \sum_{j \in N_i} P_{ij} \mathbf{z}_j(t) + \mathbf{g}_i(t)$
- 4: $\mathbf{x}_i(t+1) = \Pi^{\psi}_{\mathcal{K}}(\mathbf{z}_i(t+1), \alpha(t))$

5: end for

- *P_{ij}* > 0 only if (*i*, *j*) ∈ *E* or *P_{ij}* = 0
- $\psi(\mathbf{x}) : \mathcal{K} \to \mathbb{R}$ is a proximal function, e.g., $\psi(\mathbf{x}) = \|\mathbf{x}\|_2^2$
- projection step: $\Pi^{\psi}_{\mathcal{K}}(\mathbf{z}, \alpha) = \operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} \mathbf{z}^{\top} \mathbf{x} + \frac{1}{\alpha} \psi(\mathbf{x})$

•
$$\alpha(t) = O(1/\sqrt{t}) \rightarrow R_{T,i} = O(\sqrt{T})$$

- Distributed Online Gradient Descent [Ram et al., 2010]
 - also need a projection step

Projection-free Methods

Motivation: the projection step could be time-consuming

 $\bullet\,$ if ${\cal K}$ is a trace norm ball, it requires SVD of a matrix

- 신문 () - 신문

Projection-free Methods

- Motivation: the projection step could be time-consuming
 - if \mathcal{K} is a trace norm ball, it requires SVD of a matrix
- Distributed Online Conditional Gradient [Zhang et al., 2017]
- 1: for each local learner $i \in [n]$ do
- 2: Play $\mathbf{x}_i(t)$ and compute $\mathbf{g}_i(t) = \nabla f_{t,i}(\mathbf{x}_i(t))$
- 3: $\mathbf{v}_i = \operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} \nabla F_{t,i}(\mathbf{x}_i(t))^\top \mathbf{x}$
- 4: $\mathbf{x}_i(t+1) = \mathbf{x}_i(t) + \mathbf{s}_t(\mathbf{v}_i \mathbf{x}_i(t))$
- 5: $\mathbf{z}_i(t+1) = \sum_{j \in N_i} P_{ij}\mathbf{z}_j(t) + \mathbf{g}_i(t)$

6: **end for**

•
$$F_{t,i}(\mathbf{x}) = \eta \mathbf{z}_i(t)^\top \mathbf{x} + \|\mathbf{x} - \mathbf{x}_1(1)\|_2^2$$

•
$$\eta = O(T^{-3/4}), s_t = 1/\sqrt{t} \to R_{T,i} = O(T^{3/4})$$

- only contain linear optimization step (step 3)
- T communication rounds

- Background
- The Problem and Our Contributions

Our Algorithms D-BOCG for Full Information Setting D-BBCG for Bandit Setting

3 Experiments

4 Conclusion

・ 回 ト ・ ヨ ト ・ ヨ ト

Question

Can the O(T) communication complexity of distributed online conditional gradient (D-OCG) be reduced?

ヘロト 人間 とくほとくほとう

3

Question

Can the O(T) communication complexity of distributed online conditional gradient (D-OCG) be reduced?

An affirmative and non-trivial answer

- distributed block online conditional gradient (D-BOCG)
- communication complexity: from O(T) to $O(\sqrt{T})$
- regret bound: $O(T^{3/4})$

イロト 不得 とくほ とくほ とう

3

Question

Can the O(T) communication complexity of distributed online conditional gradient (D-OCG) be reduced?

An affirmative and non-trivial answer

- distributed block online conditional gradient (D-BOCG)
- communication complexity: from O(T) to $O(\sqrt{T})$
- regret bound: $O(T^{3/4})$
- An extension to the bandit setting
 - distributed block bandit conditional gradient (D-BBCG)
 - communication complexity: $O(\sqrt{T})$
 - high-probability regret bound: $\widetilde{O}(T^{3/4})$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

Our Algorithms

D-BOCG for Full Information Setting

・ 回 ト ・ ヨ ト ・ ヨ ト

Introduction

- Background
- The Problem and Our Contributions

Our Algorithms
 D-BOCG for Full Information Setting
 D-BBCG for Bandit Setting

3 Experiments

Conclusion

<回と < 回と < 回

Main Idea

Delayed update mechanism

- block 1 ... block m ... block \sqrt{T}
- only update in the beginning of each block
- only need \sqrt{T} communication rounds

Main Idea

Delayed update mechanism

- block 1 ... block m ... block \sqrt{T}
- only update in the beginning of each block
- only need \sqrt{T} communication rounds
- Iterative linear optimization steps
 - recall the update rules of D-OCG

$$\mathbf{v}_{i} = \underset{\mathbf{x} \in \mathcal{K}}{\operatorname{argmin}} \nabla F_{t,i}(\mathbf{x}_{i}(t))^{\top} \mathbf{x}$$
$$\mathbf{x}_{i}(t+1) = \mathbf{x}_{i}(t) + s_{t}(\mathbf{v}_{i} - \mathbf{x}_{i}(t))$$

- delayed update + D-OCG: a worse regret bound
- multiple linear optimization steps for each update

A (1) > A (2) > A (2)

イロト イヨト イヨト

Conditional Gradient with Stopping Condition (CGSC)

- CGSC [Garber and Kretzu, 2019]
- 1: Input: feasible set \mathcal{K} , $\epsilon > 0$, L, $F(\mathbf{x})$, \mathbf{x}_{in}
- 2: $\tau = 0, c_1 = x_{in}$
- 3: repeat
- 4: $\tau = \tau + 1$
- 5: $\mathbf{V}_{\tau} \in \underset{\mathbf{x} \in \mathcal{K}}{\operatorname{argmin}} \nabla F(\mathbf{C}_{\tau})^{\top} \mathbf{X}$ 6: $\mathbf{s} = \underset{\tau}{\operatorname{argmin}} F(\mathbf{C}_{\tau} + \mathbf{s})^{\top} \mathbf{X}$
- 6: $s_{\tau} = \underset{s \in [0,1]}{\operatorname{argmin}} F(\mathbf{c}_{\tau} + s(\mathbf{v}_{\tau} \mathbf{c}_{\tau}))$
- 7: $\mathbf{c}_{\tau+1} = \mathbf{c}_{\tau} + s_{\tau}(\mathbf{v}_{\tau} \mathbf{c}_{\tau})$
- 8: until $\nabla F(\mathbf{c}_{\tau})^{\top}(\mathbf{c}_{\tau}-\mathbf{v}_{\tau}) \leq \epsilon$ or $\tau = L$
- 9: return $\mathbf{x}_{out} = \mathbf{c}_{\tau}$
 - $F(\mathbf{x}_{out})$ is very small with appropriate L and ϵ
 - it was widely studied [Frank and Wolfe, 1956, Jaggi, 2013]

The Proposed D-BOCG Algorithm

1: Initialization: choose $\{\mathbf{x}_i(1) = \mathbf{0} \in \mathcal{K} | i \in V\}$ and set $\{z_i(1) = 0 | i \in V\}$ 2: for $t = 1, \dots, T$ do $m_t = \lfloor t/K \rfloor$ 3: for each local learner $i \in V$ do 4: if t > 1 and mod(t, K) = 1 then 5: $\widehat{\mathbf{g}}_i(m_t-1) = \sum_{k=t-K}^{t-1} \mathbf{g}_i(k)$ 6: $\mathbf{z}_i(m_t) = \sum_{i \in N_i} P_{ii} \mathbf{z}_i(m_t - 1) + \widehat{\mathbf{g}}_i(m_t - 1)$ 7: define $F_{m_t i}(\mathbf{x}) = \eta \mathbf{z}_i (m_t)^\top \mathbf{x} + \|\mathbf{x}\|_2^2$ 8: $\mathbf{x}_i(m_t) = \text{CGSC}(\mathcal{K}, \epsilon, L, F_{m_t}(\mathbf{x}), \mathbf{x}_i(m_t - 1))$ 9: end if 10: play $\mathbf{x}_i(m_t)$ and observe $\mathbf{g}_i(t) = \nabla f_{t,i}(\mathbf{x}_i(m_t))$ 11: end for 12: 13: end for

イロト イポト イヨト イヨト

Regret of D-BOCG

Theorem 1

Let $\eta = O(T^{-3/4})$, $\epsilon = O(T^{-1/2})$, $K = \sqrt{T}$ and $L = O(\sqrt{T})$. For any $i \in V$, D-BOCG has

$$R_{T,i} \leq O(GRT^{3/4}).$$

Assumptions

•
$$|f_{t,i}(\mathbf{x}) - f_{t,i}(\mathbf{y})| \le G \|\mathbf{x} - \mathbf{y}\|_2$$
 for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$

- $r\mathcal{B}^d \subseteq \mathcal{K} \subseteq R\mathcal{B}^d$, \mathcal{B}^d is the unit Euclidean ball
- $P \in \mathbb{R}^{n \times n}$ is symmetric and doubly stochastic, i.e.,

$$P = P^{\top}, \mathbf{1}^{\top}P = \mathbf{1}^{\top}, P\mathbf{1} = \mathbf{1}$$

Regret of D-BOCG

Theorem 1

Let $\eta = O(T^{-3/4})$, $\epsilon = O(T^{-1/2})$, $K = \sqrt{T}$ and $L = O(\sqrt{T})$. For any $i \in V$, D-BOCG has

$$R_{T,i} \leq O(GRT^{3/4}).$$

Assumptions

•
$$|f_{t,i}(\mathbf{x}) - f_{t,i}(\mathbf{y})| \leq G \|\mathbf{x} - \mathbf{y}\|_2$$
 for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$

- $r\mathcal{B}^d \subseteq \mathcal{K} \subseteq R\mathcal{B}^d$, \mathcal{B}^d is the unit Euclidean ball
- $P \in \mathbb{R}^{n \times n}$ is symmetric and doubly stochastic, i.e.,

$$\boldsymbol{P} = \boldsymbol{P}^{\top}, \boldsymbol{1}^{\top} \boldsymbol{P} = \boldsymbol{1}^{\top}, \boldsymbol{P} \boldsymbol{1} = \boldsymbol{1}$$

Remarks

- regret bound: $R_{T,i} = O(T^{3/4})$
- #communication rounds: $T/K = \sqrt{T}$
- #linear optimization steps: LT/K = O(T)

Introduction

- Background
- The Problem and Our Contributions

Our Algorithms D-BOCG for Full Information Setting

D-BBCG for Bandit Setting

3 Experiments

Conclusion

・ 回 ト ・ ヨ ト ・ ヨ ト

Standard Technique

Bandit setting

- only the loss value is available to learners
- the main challenge is due to the lack of gradient

Standard Technique

- Bandit setting
 - only the loss value is available to learners
 - the main challenge is due to the lack of gradient
- One-point Gradient Estimator [Flaxman et al., 2005]
 - δ-smoothed version of f(x)

$$\widehat{f}_{\delta}(\mathbf{x}) = \mathbb{E}_{\mathbf{u} \sim \mathcal{B}^d}[f(\mathbf{x} + \delta \mathbf{u})]$$

• let $\delta > 0$ and S^d be the unit sphere

$$abla \widehat{f_{\delta}}(\mathbf{x}) = \mathbb{E}_{\mathbf{u} \sim \mathcal{S}^d} \left[rac{d}{\delta} f(\mathbf{x} + \delta \mathbf{u}) \mathbf{u}
ight]$$

• only observe the single value $f(\mathbf{x} + \delta \mathbf{u})$

Standard Technique

- Bandit setting
 - only the loss value is available to learners
 - the main challenge is due to the lack of gradient
- One-point Gradient Estimator [Flaxman et al., 2005]
 - δ-smoothed version of f(x)

$$\widehat{f}_{\delta}(\mathbf{x}) = \mathbb{E}_{\mathbf{u} \sim \mathcal{B}^d}[f(\mathbf{x} + \delta \mathbf{u})]$$

• let $\delta > 0$ and S^d be the unit sphere

$$abla \widehat{f}_{\delta}(\mathbf{x}) = \mathbb{E}_{\mathbf{u} \sim \mathcal{S}^d} \left[rac{d}{\delta} f(\mathbf{x} + \delta \mathbf{u}) \mathbf{u}
ight]$$

- only observe the single value $f(\mathbf{x} + \delta \mathbf{u})$
- A smaller set $\mathcal{K}_{\delta} \subseteq \mathcal{K}$

•
$$\mathcal{K}_{\delta} = (1 - \delta/r)\mathcal{K} = \{(1 - \delta/r)\mathbf{x} | \mathbf{x} \in \mathcal{K}\}, \, \mathbf{0} < \delta \leq r$$

• $\mathbf{x} + \delta \mathbf{u} \in \mathcal{K}$ for $\mathbf{x} \in \mathcal{K}_{\delta}, \mathbf{u} \sim \mathcal{S}$

The Proposed D-BBCG Algorithm

1: Initialization: choose $\{\mathbf{x}_i(1) = \mathbf{0} \in \mathcal{K}_{\delta} | i \in V\}$ and set $\{z_i(1) = 0 | i \in V\}$ 2: for $t = 1, \dots, T$ do $m_t = \lceil t/K \rceil$ 3: for each local learner $i \in V$ do 4. 5: if t > 1 and mod(t, K) = 1 then $\widehat{\mathbf{q}}_i(m_t-1) = \sum_{k=t}^{t-1} \kappa \mathbf{q}_i(k)$ 6: $\mathbf{z}_i(m_t) = \sum_{i \in N_i} P_{ii} \mathbf{z}_i(m_t - 1) + \widehat{\mathbf{g}}_i(m_t - 1)$ 7: define $F_{m_t,i}(\mathbf{x}) = \eta \mathbf{z}_i(m_t)^\top \mathbf{x} + \|\mathbf{x}\|_2^2$ 8: $\mathbf{x}_i(m_t) = \text{CGSC}(\mathcal{K}_{\delta}, \epsilon, L, F_{m_t,i}(\mathbf{x}), \mathbf{x}_i(m_t - 1))$ 9: 10: end if $\mathbf{u}_i(t) \sim \mathcal{S}^d$ 11: play $\mathbf{y}_i(t) = \mathbf{x}_i(m_t) + \delta \mathbf{u}_i(t)$ and observe $f_{t,i}(\mathbf{y}_i(t))$ 12: $\mathbf{g}_i(t) = \frac{d}{s} f_{t,i}(\mathbf{y}_i(t)) \mathbf{u}_i(t)$ 13: end for 14: 15: end for ・ 回 ト ・ ヨ ト ・ ヨ ト

Regret of D-BBCG

Theorem 2

Let
$$\eta = O(T^{-3/4})$$
, $\delta = O(T^{-1/4})$, $\epsilon = O(T^{-1/2})$, $K = T^{1/2}$ and $L = O(\sqrt{T})$. For any $i \in V$, with high probability, D-BBCG has $R_{T,i} \leq \widetilde{O}(T^{3/4})$.

Additional Assumption

all local loss functions are chosen beforehand

Regret of D-BBCG

Theorem 2

Let
$$\eta = O(T^{-3/4})$$
, $\delta = O(T^{-1/4})$, $\epsilon = O(T^{-1/2})$, $K = T^{1/2}$ and $L = O(\sqrt{T})$. For any $i \in V$, with high probability, D-BBCG has $R_{T,i} \leq \widetilde{O}(T^{3/4})$.

Additional Assumption

- all local loss functions are chosen beforehand
- Remarks
 - high-probability regret bound: $R_{T,i} = \widetilde{O}(T^{3/4})$
 - #communication rounds: $T/K = \sqrt{T}$
 - #linear optimization steps: LT/K = O(T)

Introduction

- Background
- The Problem and Our Contributions

Our Algorithms D-BOCG for Full Information Setting D-BBCG for Bandit Setting

3 Experiments

Conclusion

・ 回 ト ・ ヨ ト ・ ヨ ト

Experimental Settings

Distributed multiclass classification [Zhang et al., 2017]

- 1: for t = 1, 2, ..., T do
- 2: for each local learner $i \in [n]$ do
- 3: receive an example $\mathbf{e}_i(t) \in \mathbb{R}^k$, and choose $X_i(t) = [\mathbf{x}_1^\top; \mathbf{x}_2^\top; \cdots; \mathbf{x}_h^\top] \in \mathcal{K}$
- 4: receive the true label $y_i(t)$, and suffer the multivariate logistic loss

$$f_{t,i}(X_i(t)) = \log\left(1 + \sum_{\ell \neq y_i(t)} e^{\mathbf{x}_\ell^\top \mathbf{e}_i(t) - \mathbf{x}_{y_i(t)}^\top \mathbf{e}_i(t)}\right)$$

- 5: communicate with its neighbors and update $X_i(t)$
- 6: end for
- 7: end for
 - $\mathcal{K} = \{X \in \mathbb{R}^{h \times k} | \|X\|_* \le \tau\}$, where $\|X\|_*$ denotes the trace norm of X and τ is a constant
 - the network is a cycle graph with 9 nodes

イロト 不得 とくほ とくほう

Experimental Results

aloi dataset from the LIBSVM repository [Chang and Lin, 2011]

Experimental Results

poker dataset from the LIBSVM repository

Introduction

- Background
- The Problem and Our Contributions

Our Algorithms D-BOCG for Full Information Setting D-BBCG for Bandit Setting

3 Experiments

・ 回 ト ・ ヨ ト ・ ヨ ト

Conclusion and Future Work

Conclusion

- D-BOCG enjoys an $O(T^{3/4})$ regret bound with only $O(\sqrt{T})$ communication rounds
- D-BBCG for bandit setting enjoys a high-probability $\widetilde{O}(T^{3/4})$ regret bound with only $O(\sqrt{T})$ communication rounds

Future Work

 improve the regret bound of projection-free distributed online learning by utilizing the curvature of functions

同下 イヨト イヨー

Reference I

Thanks!

Chang, C.-C. and Lin, C.-J. (2011).

LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(27):1–27.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. (2005).

Online convex optimization in the bandit setting: Gradient descent without a gradient. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 385–394.

Frank, M. and Wolfe, P. (1956).

An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1–2):95–110.

Garber, D. and Kretzu, B. (2019).

Improved regret bounds for projection-free bandit convex optimization. arXiv:1910.03374.

Hosseini, S., Chapman, A., and Mesbahi, M. (2013).

Online distributed optimization via dual averaging. In 52nd IEEE Conference on Decision and Control, pages 1484–1489.

Jaggi, M. (2013).

Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceedings of the 30th International Conference on Machine Learning, pages 427–435.

Reference II

Ram, S. S., Nedić, A., and Veeravalli, V. V. (2010).

Distributed stochastic subgradient projection algorithms for convex optimization. *Journal of Optimization Theory and Applications*, 147(3):516–545.

Zhang, W., Zhao, P., Zhu, W., Hoi, S. C. H., and Zhang, T. (2017). Projection-free distributed online learning in networks. In Proceedings of the 34th International Conference on Machine Learning, pages 4054–4062.

