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The 1-slide summary

We show how to study a classifier without even a black box access to
the classifier and without validation data.

Our methodology makes provable inferences about classifier quality.

The quality combines the accuracy and the fairness of the classifier.

We make inferences using a small number of aggregate statistics.

We demonstrate in experiments a wide range of possible applications.
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Introduction

Classifiers affect many aspects of our lives.

But some of these classifiers cannot be directly validated:
I Unavailability of representative individual-level validation data
I Company of government secret: not even black-box access

What can we infer about a classifier using only aggregate statistics?
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What can we tell about an unpublished classifier?

A motivating example:

A health insurance company classifies whether a client is as
“at risk” for some medical condition.

We do not know how this classification is done;

We have no individual classification data.

But we would still like to study the properties of the classifier:
I Accuracy
I Fairness

Can this be done with minimal information about the classifier?
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Fairness

Fairness is defined with respect to some attribute of the individual.
I E.g., race, age, gender, state of residence

We will be interested in attributes with several different values.

A sub-population includes the individual who share the attribute
value (e.g., same race/age bracket/state, etc.).

A fair classifier treats all sub-populations the same.

Equalized Odds [Hardt et. al, 2016]:
The false positive rate (FPR) and the false negative rate (FNR)
are fixed across all sub-populations.
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Using population statistics
Back to the example: Use available information

Size of each sub-population

Prevalence rate of the condition in each sub-population

Fraction of positive predictions in each sub-population.

State Population Fraction Have condition Classified as positive
California 12.2% 0.3% 0.4%

Texas 8.6% 1.2% 5%
... ... ... ...

What is the accuracy of this classifier? What is the fairness?

Without individual data, there are many possibilities:
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The relationship between accuracy and fairness

If fairness or error are constrained, this also constrains the other.

Example:
Population Fraction Have condition Classified as positive

State A 1/2 1/3 1/2
State B 1/2 2/3 2/3

I True positives: .

I Which are the predicted positives?

I Smallest error: . Error of 12.5%, unfair.

I Fair solution: . 25% error.
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Balancing accuracy and fairness

The two measures:

I error: Fraction of the population classified with the wrong label.
I unfairness: Fraction of the population treated differently than a

common baseline. We expand on this next.

Combine both desiderata:
For β ∈ [0, 1],

discrepancyβ := β · unfairness + (1− β) · error,

β defines a trade-off between (un)fairness and error.

By lower-bounding discrepancyβ, we can answer:

I What is the minimal unfairness that the classifier must have,
given an upper bound on its error?

I What is the minimal error that the classifier must have,
given an upper bound on its unfairness?

I What is the minimal combined cost of this classifier?
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Quanitifying unfairness

Decompose the conditional distribution of predictions given labels:
I A baseline distribution which is common to all sub-populations;

FPR = α1 and FNR = α0,
I A nuisance distribution for each sub-population s;

FPR = α1
s and FNR = α0

s ,
I The distribution for sub-population s is a mixture:

ηs · Nuisances + (1− ηs) · Baseline.

I Define unfairness as the fraction of the population that is treated
differently from the baseline treatment =

∑
s ηs .

I The decomposition to baseline and nuisance is unobserved.
I Set ηs to the minimum consistent with the input statistics.

η(αy , αy
s ) =


1− αy

s /α
y αy

s < αy

1− (1− αy
s )/(1− αy ) αy

s > αy

0 αy
s = αy .

 0

 0.1
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 0.4
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 0.6
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 1
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η
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Lower-bounding discrepancyβ
Given known FPRs and FNRs {αy

s } in each sub-population,

discrepancyβ({αy
s }) =

β · min
(α0,α1)∈[0,1]2

∑
g∈G

ws

∑
y∈Y

πy
s η(αy , αy

s ) + (1− β) ·
∑
g∈G

ws

∑
y∈Y

πy
s α

y
s .

ws := P(attribute value is s)

πs := P(positive label | s)

p̂s := P(positive prediction | s)

We derive a lower bound on min{αy
s } discrepancyβ({αy

s }) subject to
the constraints imposed by {ws , πs , p̂s}.

Theorem

The minimum of discrepancyβ({αy
s }) subject to the constraints imposed

by {ws , πs , p̂s} is obtained by an assignment in a small number of
one-dimensional solution sets.
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Experiments: Tightness of lower bound

(In all experiments, sub-populations are defined by state of residence.)

We obtain a lower bound; how tight is it in practice?

Generated hundreds of classifiers from the US Census data set.

The classifiers are known and we can calculate their true properties.

Left plot: Compared the lower bound on
discrepancy1 ≡ unfairness with the true unfairness.

Right plot: For randomly selected classifiers, the ratio between the
true value and the lower bound for β ∈ [0, 1].
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(In all experiments, sub-populations are defined by state of residence.)

We obtain a lower bound; how tight is it in practice?

Generated hundreds of classifiers from the US Census data set.

The classifiers are known and we can calculate their true properties.

Left plot: Compared the lower bound on
discrepancy1 ≡ unfairness with the true unfairness.

Right plot: For randomly selected classifiers, the ratio between the
true value and the lower bound for β ∈ [0, 1].
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Experiments: Making inferences in the wild (1)
In the following experiments, discrepancyβ is unknown.
We calculate (unfairness,error) Pareto-curves as a function of β.

Experiment 1: Identify if anonymous individuals have a certain cancer
from their search queries in Bing.
Classify as positive if user searched for said cancer.
True positive rates per state from CDC data.
Results lower-bound the quality of these classifiers.
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Experiments: Making inferences in the wild (2)

Experiment (2): Studied 10 pre-election polls from
the 2016 US presidential elections.

Treat each poll as a classifier from individual to vote.

How biased are these polls in their treatment of different states?
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Experiments: Making inferences in the wild (3)
Experiment (3): Compare cancer mortality rates in different states
“True positive” rates: cancer mortality rates in each state
“Predicted” rates: expected mortality in the state based on cancer
prevalence and overall US mortality.
“Classifier” maps an individual to an outcome (living/deceased)
Error and unfairness can speculatively point to patterns in health care
access or in cancer strains.
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Summary

We showed how a small set of aggregate statistics can be used
to make strong inferences about the quality of the classifier.

The methodology can be applied to a range of applications:
I Estimating the quality of a classifier during development stages
I Studying classifiers of public importance
I Analysis of statistical phenomena by defining an appropriate classifier

Extending this toolbox is an important research direction
with many open problems.
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