Bounding the fairness and accuracy of classifiers from population statistics ICML 2020

Sivan Sabato and Elad Yom-Tov

• We show how to study a classifier without even a black box access to the classifier and without validation data.

- We show how to study a classifier without even a black box access to the classifier and without validation data.
- Our methodology makes provable inferences about classifier quality.

- We show how to study a classifier without even a black box access to the classifier and without validation data.
- Our methodology makes provable inferences about classifier quality.
- The quality combines the accuracy and the fairness of the classifier.

- We show how to study a classifier without even a black box access to the classifier and without validation data.
- Our methodology makes provable inferences about classifier quality.
- The quality combines the accuracy and the fairness of the classifier.
- We make inferences using a small number of aggregate statistics.

- We show how to study a classifier without even a black box access to the classifier and without validation data.
- Our methodology makes provable inferences about classifier quality.
- The quality combines the accuracy and the fairness of the classifier.
- We make inferences using a small number of aggregate statistics.
- We demonstrate in experiments a wide range of possible applications.

- We show how to study a classifier without even a black box access to the classifier and without validation data.
- Our methodology makes provable inferences about classifier quality.
- The quality combines the accuracy and the fairness of the classifier.
- We make inferences using a small number of aggregate statistics.
- We demonstrate in experiments a wide range of possible applications.

Introduction

- Classifiers affect many aspects of our lives.
- But some of these classifiers cannot be directly validated:
 - Unavailability of representative individual-level validation data
 - Company of government secret: not even black-box access
- What can we infer about a classifier using only aggregate statistics?

What can we tell about an unpublished classifier?

A motivating example:

- A health insurance company classifies whether a client is as "at risk" for some medical condition.
- We do not know how this classification is done;
- We have no individual classification data.

What can we tell about an unpublished classifier?

A motivating example:

- A health insurance company classifies whether a client is as "at risk" for some medical condition.
- We do not know how this classification is done;
- We have no individual classification data.
- But we would still like to study the properties of the classifier:
 - Accuracy
 - Fairness

What can we tell about an unpublished classifier?

A motivating example:

- A health insurance company classifies whether a client is as "at risk" for some medical condition.
- We do not know how this classification is done;
- We have no individual classification data.
- But we would still like to study the properties of the classifier:
 - Accuracy
 - Fairness
- Can this be done with minimal information about the classifier?

Fairness

- Fairness is defined with respect to some attribute of the individual.
 - E.g., race, age, gender, state of residence
- We will be interested in attributes with several different values.
- A **sub-population** includes the individual who share the attribute value (e.g., same race/age bracket/state, etc.).

Fairness

- Fairness is defined with respect to some attribute of the individual.
 - E.g., race, age, gender, state of residence
- We will be interested in attributes with several different values.
- A **sub-population** includes the individual who share the attribute value (e.g., same race/age bracket/state, etc.).
- A fair classifier treats all sub-populations the same.
- Equalized Odds [Hardt et. al, 2016]: The false positive rate (FPR) and the false negative rate (FNR) are fixed across all sub-populations.

- Size of each sub-population
- Prevalence rate of the condition in each sub-population
- Fraction of positive predictions in each sub-population.

State Population Fraction		Have condition	Classified as positive	
California 12.2%		0.3% 0.4%		
Texas	8.6%	1.2%	5%	

Back to the example: Use available information

- Size of each sub-population
- Prevalence rate of the condition in each sub-population
- Fraction of positive predictions in each sub-population.

State	Population Fraction	Have condition	Classified as positive	
California	12.2%	0.3%	0.4%	
Texas	8.6%	1.2%	5%	

• What is the accuracy of this classifier? What is the fairness?

- Size of each sub-population
- Prevalence rate of the condition in each sub-population
- Fraction of positive predictions in each sub-population.

State	Population Fraction	Have condition	Classified as positive	
California	12.2%	0.3%	0.4%	
Texas	8.6%	1.2%	5%	

- What is the accuracy of this classifier? What is the fairness?
- Without individual data, there are many possibilities:

- Size of each sub-population
- Prevalence rate of the condition in each sub-population
- Fraction of positive predictions in each sub-population.

State	Population Fraction	Have condition	Classified as positive	
California	12.2%	0.3%	0.4%	
Texas	8.6%	1.2%	5%	

- What is the accuracy of this classifier? What is the fairness?
- Without individual data, there are many possibilities:

- Size of each sub-population
- Prevalence rate of the condition in each sub-population
- Fraction of positive predictions in each sub-population.

State	Population Fraction	Have condition	Classified as positive	
California	12.2%	0.3%	0.4%	
Texas	8.6%	1.2%	5%	

- What is the accuracy of this classifier? What is the fairness?
- Without individual data, there are many possibilities:

• If fairness or error are constrained, this also constrains the other.

• If fairness or error are constrained, this also constrains the other.

• Example:

	Population Fraction	Have condition	Classified as positive
State A	1/2	1/3	1/2
State B	1/2	2/3	2/3

- If fairness or error are constrained, this also constrains the other.
- Example:

	Population Fraction	Have condition	Classified as positive	
State A	1/2	1/3	1/2	
State B	1/2	2/3	2/3	
True positives:				

- If fairness or error are constrained, this also constrains the other.
- Example:

	Population Fraction	Have condition	Classified as positive
State A	1/2	1/3	1/2
State B	1/2	2/3	2/3

- True positives:
- Which are the predicted positives?

- If fairness or error are constrained, this also constrains the other.
- Example:

	Population Fraction	Have condition	Classified as positive
State A	1/2	1/3	1/2
State B	1/2	2/3	2/3

- True positives:
- Which are the predicted positives?

Smallest error:

Error of 12.5%, unfair.

- If fairness or error are constrained, this also constrains the other.
- Example:

			Population Fraction	Have	condition	Classified as positive
		State A	1/2		1/3	1/2
		State B	1/2		2/3	2/3
•	True p	ositives:				
Þ	Which	are the	predicted posi	tives?		
•	Smalle	st error:			Error o	f 12.5%, unfair.
•	Fair so	lution:			25% er	ror.

• The two measures:

- The two measures:
 - error: Fraction of the population classified with the wrong label.

- The two measures:
 - error: Fraction of the population classified with the wrong label.
 - unfairness: Fraction of the population treated differently than a common baseline. We expand on this next.

- The two measures:
 - error: Fraction of the population classified with the wrong label.
 - unfairness: Fraction of the population treated differently than a common baseline. We expand on this next.
- Combine both desiderata:

For $\beta \in [0, 1]$,

- The two measures:
 - error: Fraction of the population classified with the wrong label.
 - unfairness: Fraction of the population treated differently than a common baseline. We expand on this next.
- Combine both desiderata: For $\beta \in [0, 1]$,

 $discrepancy_{\beta} := \beta \cdot unfairness + (1 - \beta) \cdot error,$

• β defines a trade-off between (un)fairness and error.

- The two measures:
 - error: Fraction of the population classified with the wrong label.
 - unfairness: Fraction of the population treated differently than a common baseline. We expand on this next.
- Combine both desiderata: For $\beta \in [0, 1]$,

- β defines a trade-off between (un)fairness and error.
- By lower-bounding discrepancy $_{\beta}$, we can answer:

- The two measures:
 - error: Fraction of the population classified with the wrong label.
 - unfairness: Fraction of the population treated differently than a common baseline. We expand on this next.
- Combine both desiderata: For $\beta \in [0, 1]$,

- β defines a trade-off between (un)fairness and error.
- By **lower-bounding** discrepancy_{*B*}, we can answer:
 - What is the minimal unfairness that the classifier must have, given an upper bound on its error?

- The two measures:
 - error: Fraction of the population classified with the wrong label.
 - unfairness: Fraction of the population treated differently than a common baseline. We expand on this next.
- Combine both desiderata: For $\beta \in [0, 1]$,

- β defines a trade-off between (un)fairness and error.
- By **lower-bounding** discrepancy_{*β*}, we can answer:
 - What is the minimal unfairness that the classifier must have, given an upper bound on its error?
 - What is the minimal error that the classifier must have, given an upper bound on its unfairness?

- The two measures:
 - error: Fraction of the population classified with the wrong label.
 - unfairness: Fraction of the population treated differently than a common baseline. We expand on this next.
- Combine both desiderata: For $\beta \in [0, 1]$,

- β defines a trade-off between (un)fairness and error.
- By **lower-bounding** discrepancy_{*β*}, we can answer:
 - What is the minimal unfairness that the classifier must have, given an upper bound on its error?
 - What is the minimal error that the classifier must have, given an upper bound on its unfairness?
 - What is the minimal combined cost of this classifier?

- Decompose the conditional distribution of predictions given labels:
 - A baseline distribution which is common to all sub-populations; ${\rm FPR}=\alpha^1$ and ${\rm FNR}=\alpha^0$,
 - A nuisance distribution for each sub-population s; $FPR = \alpha_s^1$ and $FNR = \alpha_s^0$,
 - The distribution for sub-population s is a mixture:

```
\eta_s \cdot \text{Nuisance}_s + (1 - \eta_s) \cdot \text{Baseline}.
```

- Decompose the conditional distribution of predictions given labels:
 - A baseline distribution which is common to all sub-populations; ${\rm FPR}=\alpha^1$ and ${\rm FNR}=\alpha^0$,
 - A nuisance distribution for each sub-population s; $FPR = \alpha_s^1$ and $FNR = \alpha_s^0$,
 - The distribution for sub-population s is a mixture:

 $\eta_s \cdot \text{Nuisance}_s + (1 - \eta_s) \cdot \text{Baseline}.$

► Define unfairness as the fraction of the population that is treated differently from the baseline treatment = $\sum_{s} \eta_{s}$.

- Decompose the conditional distribution of predictions given labels:
 - A baseline distribution which is common to all sub-populations; ${\rm FPR}=\alpha^1$ and ${\rm FNR}=\alpha^0$,
 - A nuisance distribution for each sub-population s; $FPR = \alpha_s^1$ and $FNR = \alpha_s^0$,
 - The distribution for sub-population s is a mixture:

 $\eta_s \cdot \text{Nuisance}_s + (1 - \eta_s) \cdot \text{Baseline}.$

- ► Define unfairness as the fraction of the population that is treated differently from the baseline treatment = $\sum_{s} \eta_{s}$.
- The decomposition to baseline and nuisance is unobserved.

- Decompose the conditional distribution of predictions given labels:
 - A baseline distribution which is common to all sub-populations; ${\rm FPR}=\alpha^1$ and ${\rm FNR}=\alpha^0$,
 - A nuisance distribution for each sub-population s; $FPR = \alpha_s^1$ and $FNR = \alpha_s^0$,
 - The distribution for sub-population s is a mixture:

 $\eta_s \cdot \text{Nuisance}_s + (1 - \eta_s) \cdot \text{Baseline}.$

- ► Define unfairness as the fraction of the population that is treated differently from the baseline treatment = $\sum_{s} \eta_{s}$.
- The decomposition to baseline and nuisance is unobserved.
- Set η_s to the minimum consistent with the input statistics.

- Decompose the conditional distribution of predictions given labels:
 - A baseline distribution which is common to all sub-populations; ${\rm FPR}=\alpha^1$ and ${\rm FNR}=\alpha^0$,
 - A nuisance distribution for each sub-population s; $FPR = \alpha_s^1$ and $FNR = \alpha_s^0$,
 - The distribution for sub-population s is a mixture:

$$\eta_{s} \cdot \mathsf{Nuisance}_{s} + (1 - \eta_{s}) \cdot \mathsf{Baseline}.$$

- ► Define unfairness as the fraction of the population that is treated differently from the baseline treatment = $\sum_{s} \eta_{s}$.
- The decomposition to baseline and nuisance is unobserved.
- Set η_s to the minimum consistent with the input statistics.

$$\eta(\alpha^{y}, \alpha_{s}^{y}) = \begin{cases} 1 - \alpha_{s}^{y}/\alpha^{y} & \alpha_{s}^{y} < \alpha^{y} & 0 \\ 1 - (1 - \alpha_{s}^{y})/(1 - \alpha^{y}) & \alpha_{s}^{y} > \alpha^{y} & 0 \\ 0 & \alpha_{s}^{y} = \alpha^{y} & 0 \\ 0 & 0 \end{cases}$$

0.2

h 0.6

0.4

0.8

Lower-bounding discrepancy $_\beta$

• Given known FPRs and FNRs $\{\alpha_s^{y}\}$ in each sub-population,

$$\operatorname{discrepancy}_{\beta}(\{\alpha_{s}^{y}\}) = \beta \cdot \min_{(\alpha^{0},\alpha^{1}) \in [0,1]^{2}} \sum_{g \in \mathcal{G}} w_{s} \sum_{y \in \mathcal{Y}} \pi_{s}^{y} \eta(\alpha^{y}, \alpha_{s}^{y}) + (1-\beta) \cdot \sum_{g \in \mathcal{G}} w_{s} \sum_{y \in \mathcal{Y}} \pi_{s}^{y} \alpha_{s}^{y}.$$

$$w_s := P(\text{attribute value is } s)$$

 $\pi_s := P(\text{positive label} \mid s)$
 $\hat{p}_s := P(\text{positive prediction} \mid s)$

Lower-bounding discrepancy_b

• Given known FPRs and FNRs $\{\alpha_s^{\gamma}\}$ in each sub-population,

$$\operatorname{discrepancy}_{\beta}(\{\alpha_{s}^{y}\}) = \beta \cdot \min_{(\alpha^{0},\alpha^{1})\in[0,1]^{2}} \sum_{g\in\mathcal{G}} w_{s} \sum_{y\in\mathcal{Y}} \pi_{s}^{y} \eta(\alpha^{y},\alpha_{s}^{y}) + (1-\beta) \cdot \sum_{g\in\mathcal{G}} w_{s} \sum_{y\in\mathcal{Y}} \pi_{s}^{y} \alpha_{s}^{y}.$$

- $w_s := P(\text{attribute value is } s)$ $\pi_s := P(\text{positive label } | s)$ $\hat{p}_s := P(\text{positive prediction } | s)$
- We derive a lower bound on min_{{α_s} discrepancy_β({α_s^y}) subject to the constraints imposed by {w_s, π_s, p̂_s}.

Lower-bounding discrepancy_b

• Given known FPRs and FNRs $\{\alpha_s^{y}\}$ in each sub-population,

$$discrepancy_{\beta}(\{\alpha_{s}^{y}\}) = \beta \cdot \min_{(\alpha^{0},\alpha^{1})\in[0,1]^{2}} \sum_{g\in\mathcal{G}} w_{s} \sum_{y\in\mathcal{Y}} \pi_{s}^{y} \eta(\alpha^{y},\alpha_{s}^{y}) + (1-\beta) \cdot \sum_{g\in\mathcal{G}} w_{s} \sum_{y\in\mathcal{Y}} \pi_{s}^{y} \alpha_{s}^{y}.$$

- $w_s := P(\text{attribute value is } s)$ $\pi_s := P(\text{positive label } | s)$ $\hat{p}_s := P(\text{positive prediction } | s)$
- We derive a lower bound on $\min_{\{\alpha_s^{\gamma}\}} \text{discrepancy}_{\beta}(\{\alpha_s^{\gamma}\})$ subject to the constraints imposed by $\{w_s, \pi_s, \hat{p}_s\}$.

Theorem

The minimum of discrepancy_{β}({ α_s^y }) subject to the constraints imposed by { w_s, π_s, \hat{p}_s } is obtained by an assignment in a small number of one-dimensional solution sets.

• (In all experiments, sub-populations are defined by state of residence.)

- (In all experiments, sub-populations are defined by state of residence.)
- We obtain a lower bound; how tight is it in practice?

- (In all experiments, sub-populations are defined by state of residence.)
- We obtain a lower bound; how tight is it in practice?
- Generated hundreds of classifiers from the US Census data set.
- The classifiers are known and we can calculate their true properties.

- (In all experiments, sub-populations are defined by state of residence.)
- We obtain a lower bound; how tight is it in practice?
- Generated hundreds of classifiers from the US Census data set.
- The classifiers are known and we can calculate their true properties.
- Left plot: Compared the lower bound on discrepancy₁ ≡ unfairness with the true unfairness.
- Right plot: For randomly selected classifiers, the ratio between the true value and the lower bound for $\beta \in [0, 1]$.

Experiments: Making inferences in the wild (1)

- In the following experiments, $discrepancy_{\beta}$ is unknown.
- We calculate (unfairness, error) Pareto-curves as a function of β .

Experiments: Making inferences in the wild (1)

- In the following experiments, $discrepancy_{\beta}$ is unknown.
- We calculate (unfairness, error) Pareto-curves as a function of β .
- Experiment 1: Identify if anonymous individuals have a certain cancer from their search queries in Bing.
- Classify as positive if user searched for said cancer.
- True positive rates per state from CDC data.
- Results lower-bound the quality of these classifiers.

Experiments: Making inferences in the wild (2)

- Experiment (2): Studied 10 pre-election polls from the 2016 US presidential elections.
- Treat each poll as a classifier from individual to vote.
- How biased are these polls in their treatment of different states?

Experiments: Making inferences in the wild (3)

- Experiment (3): Compare cancer mortality rates in different states
- "True positive" rates: cancer mortality rates in each state
- "Predicted" rates: expected mortality in the state based on cancer prevalence and **overall** US mortality.
- "Classifier" maps an individual to an outcome (living/deceased)
- Error and unfairness can speculatively point to patterns in health care access or in cancer strains.

Summary

- We showed how a small set of aggregate statistics can be used to make strong inferences about the quality of the classifier.
- The methodology can be applied to a range of applications:
 - Estimating the quality of a classifier during development stages
 - Studying classifiers of public importance
 - Analysis of statistical phenomena by defining an appropriate classifier
- Extending this toolbox is an important research direction with many open problems.

Summary

- We showed how a small set of aggregate statistics can be used to make strong inferences about the quality of the classifier.
- The methodology can be applied to a range of applications:
 - Estimating the quality of a classifier during development stages
 - Studying classifiers of public importance
 - Analysis of statistical phenomena by defining an appropriate classifier
- Extending this toolbox is an important research direction with many open problems.

