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Contribution
We propose
• Nested SubSpace (NSS) arrangement: a general framework 
for representation of relational data in continuous space

• Disk-ANChor ARrangement (DANCAR):
to represent directed graphs

The DANCAR can be used for :
• Visualization of a large-scale network
to reveal both cluster structure and hierarchical structure

• Representation of a directed graph accurately
in terms of the edge reconstruction task

a python implementation is available at https://github.com/KyushuUniversityMathematics/DANCAR

https://github.com/KyushuUniversityMathematics/DANCAR
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2. Definition : Relational Data 

Entities

cat animal

animal cat

hypernym

hyponym

Relations

cat
animal
happy

• Entities 𝑉
• Types of relations 𝐿
• Relational Structure 𝜙∗ = 𝜙": 𝑉" → 𝐿 "#$

%

𝜙" : relations among 𝑖 entitiesRelational data

𝜙∗ =

,
𝜙! 𝜙"

𝜙! 1 = cat 𝜙" 1,2 = hypernym
𝜙" 2,1 = hyponym
𝜙" 1,3 = 0

⋮

𝜙! 2 = animal
𝜙! 3 = happy

Discrete Objects 𝒱

𝑉 = {1, 2, 3}
𝐿 = {cat, animal, happy, hypernym, hyponym, 0}

𝜙! ≡ 0,
𝜙" ≡ 0,

⋮

ex) knowledge base → Relational Data
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2. Definition : Nested SubSpace (NSS)
Continuous Representation 𝒳

ex) 

𝑨𝟐
𝑨𝟏

Nested SubSpace (NSS)

• NSS with depth 𝑛 : sequence of spaces
𝐴" ⊂ ⋯ ⊂ 𝐴1 ⊂ 𝑋 ∈ 𝒮1 𝑋

• NSS arrangement with depth 𝑛
= collection of NSSs with depth 𝑛

The result of Disk embedding =
NSS arrangement with depth 1

An example of an NSS with 
depth 1, 2, 3.
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2. Definition : Nested SubSpace (NSS)

Disk embedding = NSS arrangement with depth 1
• all nodes is assigned to a disk
• a disk is an NSS with depth 1
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2. NSS arrangement

• Nodes 𝑉 = {𝑣$, … , 𝑣&}
• Types of relations 𝐿
• Relational Structure 
𝜙∗ = 𝜙": 𝑉" → 𝐿 "#$

% ∈ Φ&(𝐿)

Relational Data

Collection of NSSs
𝐴"2, ⋯ , 𝐴12 2

NSS Arrangement

• Embedding
= map 𝑓: 𝑣 ↦ 𝐴#$, ⋯ , 𝐴%$

• Reconstruction
= collection of maps
𝑔&: 𝐴#$, ⋯ , 𝐴%$ $ ↦ 𝜙∗

Embedding

𝑨𝟐𝒗
𝑨𝟏𝒗

𝑣

𝑤
𝑨𝟐𝒘

𝑨𝟏𝒘↦𝑓

Embedding

Reconstruction

↦
𝑔! 𝑣

𝑤

Reconstruction
Reconstruction task
= find map 𝒇 s.t.

𝒈 𝑽 𝒇 𝑽 = 𝝓∗

𝑨𝟐𝒗
𝑨𝟏𝒗

𝑨𝟐𝒘

𝑨𝟏𝒘𝑣 𝑤𝜙$ 𝑣,𝑤
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2. NSS arrangement : Reconstruction 
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2.A. Poincaré Embedding as NSS Arrangement

• Nodes 𝑉
• Edges 𝐸 ⇒ 𝜙$: 𝑉$ → 0,1

Undirected Graph

𝑓 𝑣 = 𝑐2 , 𝐷 𝑐2, 𝜀

Center    + Disk

𝑔|*| 𝑐+ , 𝐷 𝑐+, 𝜀 +∈* -
𝑣, 𝑤

=
1 if {𝑐.} ⊂ 𝐷 𝑐$, 𝜀

0 if {𝑐.} ⊄ 𝐷 𝑐$, 𝜀
𝑓 𝑣

𝑓 𝑤

Poincaré ball

𝑣 𝑤
𝑣 𝑤

⇒
⇒

Embedding

Reconstruction

𝑣 𝑤

• Embedding
= map 𝑓: 𝑣 ↦ 𝐴#$, ⋯ , 𝐴%$

• Reconstruction
= collection of maps
𝑔&: 𝐴#$, ⋯ , 𝐴%$ $ ↦ 𝜙∗

Embedding

𝑨𝟐𝒗
𝑨𝟏𝒗

𝑣

𝑤
𝑨𝟐𝒘

𝑨𝟏𝒘↦𝑓 ↦
𝑔! 𝑣

𝑤

Reconstruction
Reconstruction task
= find map 𝒇 s.t.

𝒈 𝑽 𝒇 𝑽 = 𝝓∗



2.D. Disk Embedding as NSS Arrangement

• Nodes 𝑉
• Edges 𝐸 ⇒ 𝜙$: 𝑉$ → 0,1

Directed Acyclic Graph

𝑓 𝑣 = 𝐷 𝑐2, 𝑟2

Disk

𝑔|*| 𝐷 𝑐+, 𝑟+ +∈* -
𝑣, 𝑤

=
1 if 𝐷 𝑐., 𝑟. ⊂ 𝐷 𝑐$, 𝑟$

0 if 𝐷 𝑐., 𝑟. ⊄ 𝐷 𝑐$, 𝑟$

𝑣 𝑤

𝑣 𝑤
𝑣 𝑤

⇒
⇒

Embedding

Reconstruction

𝑓 𝑣

𝑓 𝑤

• Embedding
= map 𝑓: 𝑣 ↦ 𝐴#$, ⋯ , 𝐴%$

• Reconstruction
= collection of maps
𝑔&: 𝐴#$, ⋯ , 𝐴%$ $ ↦ 𝜙∗

Embedding

𝑨𝟐𝒗
𝑨𝟏𝒗

𝑣

𝑤
𝑨𝟐𝒘

𝑨𝟏𝒘↦𝑓 ↦
𝑔! 𝑣

𝑤

Reconstruction
Reconstruction task
= find map 𝒇 s.t.

𝒈 𝑽 𝒇 𝑽 = 𝝓∗
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3.1. DANCAR : Disk-ANChor ARrangement

• Nodes 𝑉
• Edges 𝐸 ⇒ 𝜙$: 𝑉$ → 0,1

Directed Graph

𝑓 𝑣 = 𝑥2 , 𝐷 𝑐2, 𝑟2

Anchor & Disk

𝑣 𝑤
Embedding

Reconstruction

𝑓 𝑤

𝑓 𝑣=
1 if 𝑥. ⊂ 𝐷 𝑐$, 𝑟$

0 if {𝑥.} ⊄ 𝐷 𝑐$, 𝑟$

𝑣 𝑤
𝑣 𝑤

⇒
⇒

𝑔|*| 𝑥+ , 𝐷 𝑐+, 𝑟+ +∈* -
𝑣, 𝑤

• Embedding
= map 𝑓: 𝑣 ↦ 𝐴#$, ⋯ , 𝐴%$

• Reconstruction
= collection of maps
𝑔&: 𝐴#$, ⋯ , 𝐴%$ $ ↦ 𝜙∗

Embedding

𝑨𝟐𝒗
𝑨𝟏𝒗

𝑣

𝑤
𝑨𝟐𝒘

𝑨𝟏𝒘↦𝑓 ↦
𝑔! 𝑣

𝑤

Reconstruction
Reconstruction task
= find map 𝒇 s.t.

𝒈 𝑽 𝒇 𝑽 = 𝝓∗



3.2. Representability of DANCAR
• Able to represent directed cycle

− By introducing anchors
− distance-based models
→cannot represent direction

− embedding as disk
→cannot represent cycle 𝑐
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3.2. Representability of DANCAR
• Able to represent directed cycle

− By introducing anchors
− Unlike embedding as points

• Able to represent directed tree
− By optimizing radii, position

Fig 6. Embedded result of ternary tree with depth=5.



3.2. Representability of DANCAR
• Able to represent directed cycle

− By introducing anchors
− Unlike embedding as points

• Able to represent directed tree
− By optimizing radii

• Generalize Poincaré embedding
− Ball in Poincaré ball is also ball
in Euclidean space

− Center is different

𝐷/012345é(𝑐, 𝑟)

Poincaré ball
𝐷 𝑐, 𝑟 = {𝑥 ∈ ℝ4 ∣ 𝑥 − 𝑐5 ≤ 𝑟5}

where

𝑐7 ≔
1

𝐾 + 1 𝑐, 𝑟7 ≔
𝐾

𝐾 + 1 1 −
1

𝐾 + 1 𝑐 - ,

𝐾 =
cosh 𝑟 − 1

2
1 − 𝑐 -

𝐷893:1;(𝑐7, 𝑟7)

Euclidean space



3.3. Loss function

𝑢 𝑣 𝑤Original Data
• Positive loss : if 𝑢, 𝑣 ∈ 𝐸,
𝑥2 should be in 𝐷 𝑐6, 𝑟6
𝐿'() ≔

1
𝐸 :

*,, ∈.

ReLU(𝑑 𝑐*, 𝑥, − 𝑟, + 𝜇)

• Negative loss : if 𝑢,𝑤 ∉ 𝐸,
𝑥H should not be in 𝐷 𝑐6, 𝑟6

𝐿/01 ≔
2

|𝑉|( 𝑉 − 1)
:
*,2 ∉.

ReLU(𝑟2 − 𝑑 𝑐*, 𝑥2 + 𝜇)

• Anchor loss : for 𝑣 ∈ 𝑉,
𝑥2 should be in 𝐷(𝑐2, 𝑟2)

𝐿4/5 ≔
1
𝑉 :

,∈6

ReLU 𝑑 𝑐, , 𝑥, − 𝑟, + 𝜇

!(#!, %!)

!(#" , %")

'!
'"

!(## , %#)
'#

⇓

Optimization
!(#!, %!)

!(#" , %")

'! '"

!(## , %#)
'#

𝐿KLMNLO ≔ 𝐿PQR + 𝜆STU𝐿STU + 𝜆VSW𝐿VSW
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4. Experiments : Visualization
• Sensitive to topology

− ex) existence of cycles

the difference : 
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4. Experiments : Visualization
• Sensitive to topology

− ex) existence of cycles

Twitter network :
• Most anchors aggregate in
black square
→ Cluster structure

• Account 𝑣X6Y, with the highest 
followers, is in the black square

• Most followers of 𝑣X6Y
have small radii
→ Hierarchical structure

Account 𝑢
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B
Fig 10. Twitter network. dot = anchor, circle = disk.



4. Experiments : Visualization
• Sensitive to topology

− ex) existence of cycles

Twitter network :
• Most anchors aggregate in
black square
→ Cluster structure

• Most followers of 𝑣X6Y
have small radii
→ Hierarchical structure

C
Fig 10. Twitter network. dot = anchor, circle = disk.

B

Account 𝑣7*8, 
with the most followers, 
is in the black square

• largest disk : disk of 𝑣7*8
• other disks : follower of 𝑣7*8
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5. Experiments : Reconstruction & Link Prediction

00.1
0.20.3
0.40.5
0.60.7
0.80.9
1

5 6 7 8 9 10

Reconstruction task 

f1 recall precision

00.1
0.20.3
0.40.5
0.60.7
0.80.9
1

5 6 7 8 9 10

Link Prediction task 

f1 recall precision
• Dataset : WordNet

− Removed root and then took transitive closure
• Reconstruction (training with 100% data) & Link prediction task (50%)
for dim=5,…,10
− Achieved almost perfect result in reconstruction task

[dim] [dim]



00.1
0.20.3
0.40.5
0.60.7
0.80.9
1

5 6 7 8 9 10

Reconstruction task 

f1 recall precision
• Outperforms existing methods with reconstruction task

− Absence of root affects result
− (With the root, disk embedding also achieved quite good result)

5. Experiments : Reconstruction & Link Prediction

[dim]

(some results are updated in camera ready version)
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6. Conclusion
We propose
• Nested SubSpace (NSS) arrangement: a general framework 
for representation of relational data in continuous space

• Disk-ANChor ARrangement (DANCAR):
to represent directed graphs

The DANCAR can be used for :
• Visualization of a large-scale network
to reveal both cluster structure and hierarchical structure

• Representation of a directed graph accurately
in terms of the edge reconstruction task

a python implementation is available at https://github.com/KyushuUniversityMathematics/DANCAR

https://github.com/KyushuUniversityMathematics/DANCAR
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Supplementary notes : reconstruction task
• Entities 𝑉
• Types of relations 𝐿
• Relational Structure 𝜙∗ = 𝜙+: 𝑉+ → 𝐿 +<#

&

Φ& 𝐿 : set of all relational structure 𝜙+ +<#&

Relational data

NSS = sequence of spaces
𝐴" ⊂ ⋯ ⊂ 𝐴1 ⊂ 𝑋 ∈ 𝒮1(𝑋)

Nested SubSpaces

𝑨𝟑 𝑨𝟐
𝑨𝟏𝑉

cat animal

animal cat

hypernym

hyponym

Relations
cat

animal
happy

Embedding• Embedding
= map 𝑓: 𝑉 → 𝒮% 𝑋

• Reconstruction
= collection of maps
𝑔&: 𝒮% 𝑋 & → Φ& 𝐿

↦
𝑔! 𝑣

𝑤

Reconstruction
Reconstruction task
= find map 𝒇 s.t.

𝒈 𝑽 𝒇 𝑽 = 𝝓∗

Embedding

Reconstruction

𝑨𝟐𝒗
𝑨𝟏𝒗

𝑨𝟐𝒘

𝑨𝟏𝒘

𝑣

𝑤

𝑓↦

Φ& 𝐿 : the set of 𝜙∗ on a discrete set of cardinality 𝑚 with labels in 𝐿
𝑉 = 𝑣#, … , 𝑣&

1. 𝑓: 𝑉 → 𝒮1 𝑋 ⟹ 𝑓 𝑣" , 𝑓 𝑣$ , … , 𝑓 𝑣[ ∈ 𝒮1 𝑋 [ = 𝒮1 𝑋 |\|

2. 𝑔 \ : 𝒮1 𝑋 |\| → Φ|\| 𝐿 ⟹ 𝑔[ 𝑓 𝑣" , 𝑓 𝑣$ , … , 𝑓 𝑣[ ∈ Φ|\| 𝐿

3. an element of Φ \ 𝐿 is a relational structure on 𝑉 labeled on 𝐿



Supplementary notes : Poincaré embedding
Q. In 2.A : 
Can we see Poincaré embedding as the NSS arrangement with depth 1?

A. Yes. In that case, 𝑓, 𝑔 can be defined as follows. To prove that the DANCAR 
generalizes the Poincaré embedding, we converted it to the NSS with depth 2.

• Nodes 𝑉
• Edges 𝐸 ⇒ 𝜙$: 𝑉$ → 0,1

Undirected Graph

𝑓 𝑣 = 𝑐2

Center

𝑔|*| 𝑐+ +∈* - 𝑣, 𝑤

=
1 if 𝑑 𝑐$, 𝑐. ≤ 𝜀

0 if 𝑑 𝑐$, 𝑐. > 𝜀
𝑓 𝑣

𝑓 𝑤

Poincaré ball

𝑣 𝑤
𝑣 𝑤

⇒
⇒

Embedding

Reconstruction

𝑣 𝑤



Supplementary notes : Existence of Root
Q. In experiments:
Does the existence of the root affect the result? 

A. Experimentally, Yes. The table is the result of the numerical experiments with :
• Transitive closure of WordNet
• embedding dim = 5
• reconstruction (training edges = 100%) and link prediction (training edges = 50%)
• evaluated by f1 score
The absence of root node does deteriorate the performance of Disk Embedding 
whereas our DANCAR is not affected a lot.

With root Reconstruction Link Prediction

DANCAR 0.74208 0.72147
Disk 

Embedding 0.83188 0.77019



Supplementary notes : Calculation Time
Q. How is the transition of the loss function during optimization?

How long did it take to optimize the arrangement? 

A. Here is the transition of loss function (DANCAR, 10 dim, took 29 hours).
In the experiment, We halved the parameter 𝛼 in Adam per 200 epochs. 

loss_pos
loss_neg (lambda_neg = 100)

loss_anc (lambda_anc = 1)



Supplementary notes : Reconstruction Rule of Figure 4
Q. What is the reconstruction rule of Figure 4?

A. In this example, the following rules are used:

• Each node 𝑣 is assigned to an NSS with depth 2: 𝐴#$ ⊂ 𝐴-$.
1. If and only if 𝐴#. ⊂ 𝐴-$, an edge (𝑣, 𝑤) is present.
2. If and only if 𝐴#. ⊂ 𝐴-$ and 𝐴-. ⊂ 𝐴-=,
a directed hyperedge 𝑢, 𝑣, 𝑤 is present.

In the right side of Figure 4, 
directed hyperedge 𝐴, 𝐵, 𝐶 is present by 
the second rule.
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Figure 4


