Concentration bounds for CVaR estimation: The cases of light-tailed and heavy-tailed distributions

Prashanth L A*, Krishna Jagannathan*, Ravi Kolla[†]

Paper #2156

* IIT Madras, Chennai, India
 † AB InBev

Objective: Estimate the Conditional Value-at-Risk (CVaR) $c_{\alpha}(X)$ of a r.v. X from n i.i.d. samples

Our Contributions: Concentration bounds $\mathbb{P}\left[|c_{n,\alpha} - c_{\alpha}(X)| > \epsilon\right]$

Objective: Estimate the Conditional Value-at-Risk (CVaR) $c_{\alpha}(X)$ of a r.v. X from n i.i.d. samples

Our Contributions: Concentration bounds $\mathbb{P}\left[|c_{n,\alpha} - c_{\alpha}(X)| > \epsilon\right]$

1) Sub-Gaussian distributions: Our bounds match an existing result, but with better constants

Objective: Estimate the Conditional Value-at-Risk (CVaR) $c_{\alpha}(X)$ of a r.v. X from n i.i.d. samples

Our Contributions: Concentration bounds $\mathbb{P}\left[|c_{n,\alpha} - c_{\alpha}(X)| > \epsilon\right]$

1) Sub-Gaussian distributions: Our bounds match an existing result, but with better constants

2) Light-tailed distributions: We derive an $O(\exp(-cn\min(\epsilon, \epsilon^2)))$ tail bound for an empirical CVaR estimator

Objective: Estimate the Conditional Value-at-Risk (CVaR) $c_{\alpha}(X)$ of a r.v. X from n i.i.d. samples

Our Contributions: Concentration bounds $\mathbb{P}\left[|c_{n,\alpha} - c_{\alpha}(X)| > \epsilon\right]$

1) Sub-Gaussian distributions: Our bounds match an existing result, but with better constants

2) Light-tailed distributions: We derive an $O(\exp(-cn\min(\epsilon, \epsilon^2)))$ tail bound for an empirical CVaR estimator

3) Heavy-tailed distributions with bounded variance: We derive an $O(\exp(-cn\epsilon^2))$ tail bound for a truncated CVaR estimator.

Objective: Estimate the Conditional Value-at-Risk (CVaR) $c_{\alpha}(X)$ of a r.v. X from n i.i.d. samples

Our Contributions: Concentration bounds $\mathbb{P}\left[|c_{n,\alpha} - c_{\alpha}(X)| > \epsilon\right]$

1) Sub-Gaussian distributions: Our bounds match an existing result, but with better constants

2) Light-tailed distributions: We derive an $O(\exp(-cn\min(\epsilon, \epsilon^2)))$ tail bound for an empirical CVaR estimator

3) Heavy-tailed distributions with bounded variance: We derive an $O(\exp(-cn\epsilon^2))$ tail bound for a truncated CVaR estimator.

4) Bandit application: Best CVaR arm identification and error bounds

What is Conditional Value-at-Risk (CVaR)?

VaR and CVaR are Risk Metrics

- Widely used in financial portfolio optimization, credit risk assessment and insurance
- Let X be a continuous random variable
- Fix a `risk level' $\alpha \in (0, 1)$ (say $\alpha = 0.95$)

VaR and CVaR are Risk Metrics

- Widely used in financial portfolio optimization, credit risk assessment and insurance
- Let X be a continuous random variable
- Fix a `risk level' $\alpha \in (0, 1)$ (say $\alpha = 0.95$)

Value at Risk: $v_{\alpha}(X) = F_{X}^{-1}(\alpha)$

VaR and CVaR are Risk Metrics

- Widely used in financial portfolio optimization, credit risk assessment and insurance
- Let X be a continuous random variable
- Fix a `risk level' $\alpha \in (0, 1)$ (say $\alpha = 0.95$)

Value at Risk: $v_{\alpha}(X) = F_{X}^{-1}(\alpha)$

Conditional Value at Risk: $c_{\alpha}(X) = \mathbb{E} [X|X > v_{\alpha}(X)]$ $= v_{\alpha}(X) + \frac{1}{1-\alpha} \mathbb{E} [X - v_{\alpha}(X)]^{+}$

CVaR Estimation and Concentration bounds

Problem: Given i.i.d. samples X_1, \ldots, X_n from the distribution *F* of r.v. *X*, estimate

$$c_{\alpha}(X) = \mathbb{E}\left[X|X > v_{\alpha}(X)\right]$$

Nice to have: Sample complexity $O(1/\epsilon^2)$ for accuracy ϵ

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n from distribution F_r ,

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\left\{X_i \leq x\right\}, \ x \in \mathbb{R}$$

Using EDF and the order statistics $X_{[1]} \leq X_{[2]} \leq \ldots, X_{[n]}$, VaR estimate:

$$\hat{\mathbf{v}}_{n,\alpha} = \inf\{\mathbf{x} : \hat{\mathbf{F}}_n(\mathbf{x}) \ge \alpha\} = \mathbf{X}_{[\lceil n\alpha \rceil]}.$$

Empirical distribution function (EDF): Given samples X_1, \ldots, X_n from distribution F_r ,

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\left\{X_i \leq x\right\}, \ x \in \mathbb{R}$$

Using EDF and the order statistics $X_{[1]} \leq X_{[2]} \leq \ldots, X_{[n]}$, VaR estimate:

$$\hat{\mathbf{v}}_{n,\alpha} = \inf\{\mathbf{x} : \hat{\mathbf{F}}_n(\mathbf{x}) \ge \alpha\} = \mathbf{X}_{[\lceil n\alpha \rceil]}.$$

CVaR estimate:

$$\hat{c}_{n,\alpha} = \hat{v}_{n,\alpha} + \frac{1}{n(1-\alpha)} \sum_{i=1}^{n} (X_i - \hat{v}_{n,\alpha})^+$$

Goal: Bound
$$\mathbb{P}[|\hat{c}_{n,\alpha} - c_{\alpha}(X)| > \epsilon]$$

Distribution type	Reference	Salient Feature
Bounded support	[Wang et al. ORL 2010]	$\exp(-cn\epsilon^2)$
Sub-Gaussian/ sub-exponential	[Kolla et al. ORL 2019]	VaR conc. One-sided CVaR
Sub-Gaussian	[S. Bhat & P. L.A. NeurIPS 2019]	Wasserstein
Sub-exponential/ Heavy-tailed	This work	

Assumption **(A1):** X is a continuous r.v. with a CDF F that satisfies a condition of *sufficient growth* around the VaR v_{α} : There exists constants $\delta, \eta > 0$ such that

$$\min\left(F\left(\mathbf{v}_{\alpha}+\delta\right)-F\left(\mathbf{v}_{\alpha}\right),F\left(\mathbf{v}_{\alpha}\right)-F\left(\mathbf{v}_{\alpha}-\delta\right)\right)\geq\eta\delta.$$

¹Concentration bounds for empirical conditional value-at-risk: The unbounded case; R. Kolla, L.A. Prashanth, S. P. Bhat, K. Jagannathan; *Operations Research Letters*, 2019

VaR Concentration¹

Assumption **(A1):** X is a continuous r.v. with a CDF F that satisfies a condition of *sufficient growth* around the VaR v_{α} : There exists constants $\delta, \eta > 0$ such that

$$\min\left(F\left(\mathbf{v}_{\alpha}+\delta\right)-F\left(\mathbf{v}_{\alpha}\right),F\left(\mathbf{v}_{\alpha}\right)-F\left(\mathbf{v}_{\alpha}-\delta\right)\right)\geq\eta\delta.$$

Lemma (VaR concentration)

Suppose that (A1) holds. We have for all $\epsilon \in (0, \delta)$,

$$\mathbb{P}\left[|\hat{\mathsf{v}}_{n,\alpha} - \mathsf{v}_{\alpha}| \geq \epsilon\right] \leq 2\exp\left(-2n\eta^{2}\epsilon^{2}\right).$$

Proof uses DKW inequality; no tail assumptions required.

¹Concentration bounds for empirical conditional value-at-risk: The unbounded case; R. Kolla, L.A. Prashanth, S. P. Bhat, K. Jagannathan; *Operations Research Letters*, 2019

Concentration for $CVaR_{\alpha}$ Estimator

- Obtaining concentration for CVaR_α estimator is more involved than for VaR_α
- Need to make some assumptions on the tail distribution

Concentration for $CVaR_{\alpha}$ Estimator

- Obtaining concentration for CVaR_α estimator is more involved than for VaR_α
- Need to make some assumptions on the tail distribution
- We work with three progressive broader distribution classes

```
(i) X is sub-Gaussian or
```

```
(ii) X is sub-exponential (i.e., light-tailed) or
```

(iii) X has a bounded second moment

Concentration for $CVaR_{\alpha}$ Estimator

- Obtaining concentration for CVaR_α estimator is more involved than for VaR_α
- Need to make some assumptions on the tail distribution
- We work with three progressive broader distribution classes

(i) X is sub-Gaussian or

(ii) X is sub-exponential (i.e., light-tailed) or

(iii) X has a bounded second moment

• For (i) and (ii), we use the empirical CVaR estimator; for (iii) we use a truncated CVaR estimator

Sub-Gaussian and Sub-Exponential distributions

A random variable is X is sub-Gaussian if $\exists \sigma > 0$ s.t.

$$\mathbb{E}\left[\boldsymbol{e}^{\lambda \boldsymbol{X}}\right] \leq \boldsymbol{e}^{\frac{\sigma^2 \lambda^2}{2}}, \; \forall \lambda \in \mathbb{R}.$$

Or equivalently, letting $Z \sim \mathcal{N}(0, \sigma^2)$,

 $\mathbb{P}[X > \epsilon] < c\mathbb{P}[Z > \epsilon], \forall \epsilon > 0.$ Tail dominated by a Gaussian

Sub-Gaussian and Sub-Exponential distributions

A random variable is X is sub-Gaussian if $\exists \sigma > 0$ s.t.

$$\mathbb{E}\left[\boldsymbol{e}^{\lambda \boldsymbol{X}}\right] \leq \boldsymbol{e}^{\frac{\sigma^2 \lambda^2}{2}}, \; \forall \lambda \in \mathbb{R}.$$

Or equivalently, letting $Z \sim \mathcal{N}(0, \sigma^2)$,

 $\mathbb{P}[X > \epsilon] \leq c\mathbb{P}[Z > \epsilon], \forall \epsilon > 0.$ ext{ — Tail dominated by a Gaussian

A random variable is X is sub-exponential if $\exists c_0 > 0$ s.t.

 $\mathbb{E}\left[e^{\lambda X}\right] < \infty, \; \forall |\lambda| < c_0.$

Or equivalently, $\exists \sigma, b > 0$ s.t. $\mathbb{E}\left[e^{\lambda X}\right] \leq e^{\frac{\sigma^2 \lambda^2}{2}}, \forall |\lambda| \in \frac{1}{b}$. Or $\mathbb{P}[X > \epsilon] \leq c_1 \exp(-c_2 \epsilon), \forall \epsilon > 0$. \leftarrow Tail dominated by an exponential r.v

CVaR concentration for Sub-Gaussian case

Recall

$$\hat{\mathbf{v}}_{n,\alpha} = \inf\{\mathbf{x} : \hat{\mathbf{F}}_n(\mathbf{x}) \ge \alpha\} = \mathbf{X}_{[\lceil n\alpha \rceil]}.$$

$$\hat{c}_{n,\alpha} = \hat{v}_{n,\alpha} + \frac{1}{n(1-\alpha)} \sum_{i=1}^{n} (X_i - \hat{v}_{n,\alpha})^+$$

CVaR concentration for Sub-Gaussian case

Recall

$$\hat{\mathbf{v}}_{n,\alpha} = \inf\{\mathbf{x} : \hat{\mathbf{F}}_n(\mathbf{x}) \ge \alpha\} = \mathbf{X}_{[\lceil n\alpha \rceil]}.$$

$$\hat{c}_{n,\alpha} = \hat{v}_{n,\alpha} + \frac{1}{n(1-\alpha)} \sum_{i=1}^{n} (X_i - \hat{v}_{n,\alpha})^+$$

Theorem (CVaR concentration for sub-Gaussian)

Assume (A1). Suppose that X_i , i = 1, ..., n are σ -sub-Gaussian. Then, for any $\epsilon \in (0, \delta)$, we have

$$\mathbb{P}\left[|\hat{c}_{n,\alpha} - c_{\alpha}| > \epsilon\right] \le 6 \exp\left[-n\psi_{1}(\epsilon)\right],$$
where $\psi_{1}(\epsilon) = \frac{\epsilon^{2}(1-\alpha)^{2}\min\left(\eta^{2},1\right)}{8\max\left(\sigma^{2},8\right)}.$

CVaR concentration for Sub-Exponential case

Recall

$$\hat{\mathbf{v}}_{n,\alpha} = \inf\{\mathbf{x}: \hat{\mathbf{F}}_n(\mathbf{x}) \geq \alpha\} = \mathbf{X}_{[\lceil n\alpha \rceil]}.$$

$$\hat{c}_{n,\alpha} = \hat{v}_{n,\alpha} + \frac{1}{n(1-\alpha)} \sum_{i=1}^{n} (X_i - \hat{v}_{n,\alpha})^+$$

Theorem (CVaR concentration for sub-Exponential)

Assume (A1). Suppose that X_i , i = 1, ..., n are sub-exponential with parameters σ , b. Then, for all $\epsilon \in (0, \delta)$, we have

$$\mathbb{P}\left[\left|\hat{c}_{n,\alpha} - c_{\alpha}\right| > \epsilon\right] \le 6 \exp\left[-n\psi_{2}(\epsilon)\right],$$
where $\psi_{2}(\epsilon) = \min\left(\frac{\epsilon^{2}(1-\alpha)^{2}\min\left(\eta^{2},1\right)}{8\max\left(\sigma^{2},8\right)}, \frac{\epsilon(1-\alpha)}{8b}\right)$

Handling Heavy-Tailed distributions

- Heavy-tailed distributions occur commonly in finance applications
- Tail of distribution decays <u>slower</u> than any exponential —characterised by atypically large sample values
- Empirical estimates may be `thrown off' due to atypically large values occurring early in the aggregating process
- Raw empirical estimates do not concentrate well around true value

²Bubeck et. al., *Bandits with Heavy-Tail*, IEEE Trans. Inf. Thy., 2013.

Handling Heavy-Tailed distributions

- Heavy-tailed distributions occur commonly in finance applications
- Tail of distribution decays slower than any exponential —characterised by atypically large sample values
- Empirical estimates may be `thrown off' due to atypically large values occurring early in the aggregating process
- Raw empirical estimates do not concentrate well around true value
- Key Idea: Truncated estimator!
- Truncate large values, while slowly growing the truncation threshold²

²Bubeck et. al., *Bandits with Heavy-Tail*, IEEE Trans. Inf. Thy., 2013.

Assume (A2) $\exists u$ such that $\mathbb{E}[X^2] < u < \infty$.

Assume (A2)
$$\exists u$$
 such that $\mathbb{E}[X^2] < u < \infty$.

Truncated CVaR Estimator

$$\hat{c}_{n,\alpha} = \frac{1}{n(1-\alpha)} \sum_{i=1}^{n} X_i \mathbb{I} \{ \hat{v}_{n,\alpha} \le X_i \le B_i \},$$

where $B_i \propto \sqrt{ui}$.

Theorem (CVaR concentration: Bounded second moment case)

Let ${X_i}_{i=1}^n$ be a sequence of i.i.d. r.v.s satisfying (A1) and (A2). Let $\hat{c}_{n,\alpha}$ be the truncated CVaR estimate formed using the above set of samples. For all $\epsilon > 0$,

$$\mathbb{P}\left[\left|\hat{c}_{n,\alpha} - c_{\alpha}\right| > \epsilon\right] \le 2 \exp\left(-\frac{n(1-\alpha)^{2}\epsilon^{2}}{144\left(\sqrt{u} + v_{\alpha}\right)^{2}}\right) + 4 \exp\left(-\frac{n\eta^{2}(1-\alpha)^{2}\min\left(\epsilon^{2},\delta^{2}\right)}{144}\right),$$

where η and δ are as defined in (A1).

Bandit application

Known # of arms K and horizon n **Unknown** Distributions $F_k, k = 1, ..., K$, **CVaR-values** (at fixed risk level α) : $c_1, c_2, ..., c_K$

Interaction In each round t = 1, ..., n

- pull arm $I_t \in \{1, \ldots, K\}$
- observe a sample loss from F_{I_t}

Recommendation Arm J_n

Benchmark: $k^* = \underset{k=1,...,K}{\operatorname{arg\,min}} c_k$.

Known # of arms K and horizon n **Unknown** Distributions $F_k, k = 1, ..., K$, **CVaR-values** (at fixed risk level α) : $c_1, c_2, ..., c_K$

Interaction In each round t = 1, ..., n

- pull arm $I_t \in \{1, \ldots, K\}$
- observe a sample loss from F_{I_t}

Recommendation Arm J_n

Benchmark: $k^* = \underset{k=1,...,K}{\operatorname{arg\,min}} c_k$.

Goal: Minimize probability of erroneous recommendation $\mathbb{P}[J_n \neq k^*]$

The Successive Rejects Algorithm³

- One arm played n_1 times, ..., another played n_{K-2} times
- Two arms played n_{K-1} times
- $n_1 + \ldots + n_{K-1} + n_{K-1} \le n$
- n_k increases with k
- Adaptive exploration: better than uniform (i.e., play each arm n/K times)

³Audibert et al., Best Arm Identification in Multi-armed Bandits, COLT 2010

Probability of error for Successive Rejects

- Suppose the arm distributions are all 1-sub-exponential.
- Given a simulation budget *n*, the probability that the SR algorithm identifies a suboptimal arm as being optimal can be bounded as

$$\mathbb{P}\left[J_n \neq h^*\right] \leq 3K(K-1)\exp\left(-\frac{(n-K)(1-\alpha)^2\beta}{H_2\log(K)}\right),$$

where β is a problem dependent constant (indep. of the gaps), and

$$H_2 = \max_{k=1,2,\dots,\kappa} \frac{k}{\min(\Delta_k, \Delta_k^2, \delta_k^2)}$$

where δ_k is the constant from (A1) for arm k's distribution

- Derived a concentration bound for empirical ${\rm CVaR}_{\alpha}$ estimator for sub-Gaussian and sub-exponential r.v.s
- A truncated CVaR estimator to handle heavy-tailed distributions
- Showed a bandit application for best ${\rm CVaR}_\alpha$ arm identification, and derived probability of error for SR algorithm

Thank you!