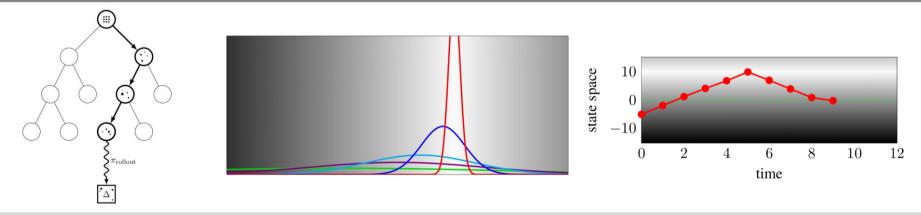


Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains

Johannes Fischer * and Ömer Sahin Tas *

*Equal contribution

International Conference on Machine Learning 2020



POMDPs

Model decision problems under uncertainty

Karlsruhe Institute of Technology

POMDPs

- Model decision problems under uncertainty
- Cover uncertainties in
 - Models
 - Environment
 - Future behavior of others

IPFT

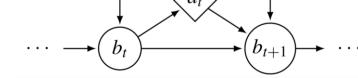
00

Model decision problems under uncertainty

POMDPs

Cover uncertainties in

- Models
- Environment
- Future behavior of others

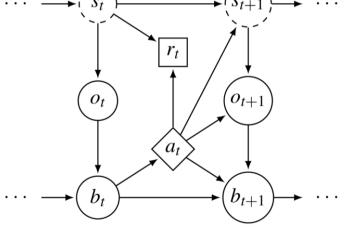


Experiments

0000

Figure: Probabilistic graphical model of a POMDP.

0



POMDPs

- Model decision problems under uncertainty
- Cover uncertainties in
 - Models
 - Environment
 - Future behavior of others
- Reasoning in high dimensional belief space

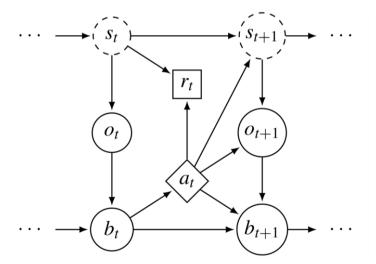
→ Difficult to solve!

Experiments

0000

ICML, July 2020

2



IPF1

00

Conclusion

POMDPs

- Model decision problems under uncertainty
- Cover uncertainties in
 - Models
 - Environment
 - Future behavior of others
- Reasoning in high dimensional belief space
 - \rightarrow Difficult to solve!

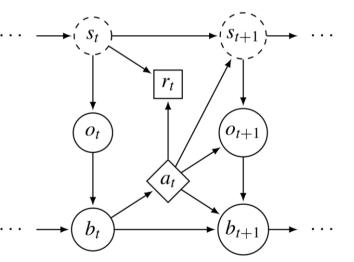
Can POMDP solvers be improved by considering information?



Experiments

0000

Conclusion



Information Measures

measures have similar shape

 \rightarrow "more information = higher value"

Optimal value function V* and information

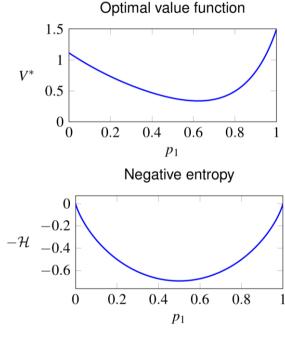


Figure: Shape of optimal value function and negative entropy.

IPFT 00 Conclusion o

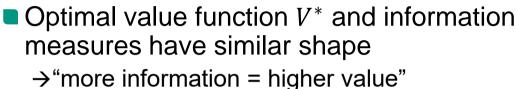
ICML, July 2020

Information Measures

Optimal value function 1.5 V^* 0.5 0 0.2 0.40.6 0.8 0 p_1 Negative entropy 0 -0.2 $-\mathcal{H}$ -0.4-0.60.2 0.4 0.8 0 0.6

Figure: Shape of optimal value function and negative entropy.

 p_1



Motivation

- Speed up planning
- Allow active information gathering

Introduction Reward Shaping o o Information Particle Filter Tree Algorithm for Continuous ρ POMDPs

IPFT 00 Conclusion

POMDPs

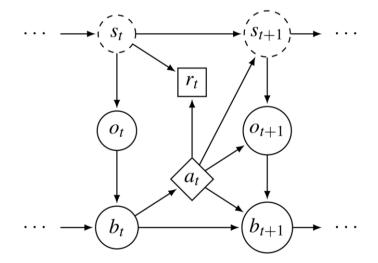


Figure: Probabilistic graphical model of a POMDP.

 $\begin{array}{c} \text{Introduction} \\ \circ \circ \bullet \circ \end{array} \\ \hline \text{Reward Shaping} \\ \circ \circ \end{array} \\ \hline \text{Information Particle Filter Tree Algorithm for Continuous } \rho \text{POMDPs} \end{array}$

IPFT 00 Experiments

Conclusion o

ICML, July 2020

$\rho {\rm POMDPs}$

Extension of POMDP framework
 Belief-dependent reward model $\rho(b, a)$

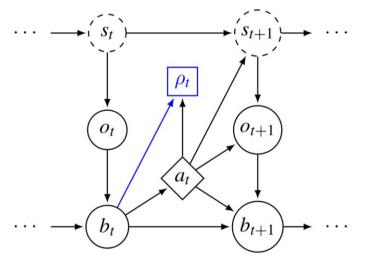


Figure: Probabilistic graphical model of a ρ POMDP.

[1] Araya-López et al., "A POMDP Extension with Belief-dependent Rewards," (2010)

IntroductionReward ShapingIPFTο ο ο οο οο οInformation Particle Filter Tree Algorithm for Continuous ρPOMDPs

Experiments oooo Conclusion

0

ICML, July 2020

)

Karlsruhe Institute of Technology

$\rho {\rm POMDPs}$

- Extension of POMDP framework
- Belief-dependent reward model $\rho(b, a)$
- Solvers exist only for
 - Discrete problems
 - Piecewise linear and convex ρ
 - Offline computation

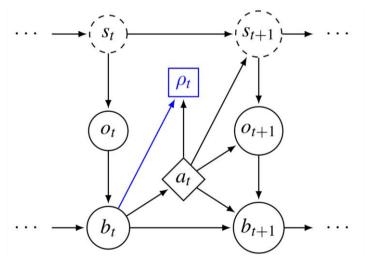


Figure: Probabilistic graphical model of a ρ POMDP.

[1] Araya-López et al., "A POMDP Extension with Belief-dependent Rewards," (2010)

Experiments

Conclusion

Karlsruhe Institute of Technology

$\rho {\rm POMDPs}$

- Extension of POMDP framework
- Belief-dependent reward model $\rho(b, a)$
- Solvers exist only for
 - Discrete problems
 - Piecewise linear and convex ρ
 - Offline computation

How can ρ POMDPs on continuous domains be solved online?

 $\cdots \rightarrow (s_t) \rightarrow (s_{t+1}) \rightarrow \cdots$ $\downarrow \qquad (s_{t+1}) \rightarrow \cdots$ $o_t \qquad (s_{t+1}) \rightarrow \cdots$ $o_t \qquad (s_{t+1}) \rightarrow \cdots$ $b_t \qquad (b_{t+1}) \rightarrow \cdots$

Figure: Probabilistic graphical model of a ρ POMDP.

Experiments

0000

[1] Araya-López et al., "A POMDP Extension with Belief-dependent Rewards," (2010)

IPF1

00

Introduction Reward Shaping $\circ \circ \circ \circ$ Information Particle Filter Tree Algorithm for Continuous ρ POMDPs

ICML, July 2020

Conclusion

Approach - Information Particle Filter Tree

Adapt MCTS-based POMDP solver
 Approximate belief by particles
 Evaluate *ρ* on particle sets

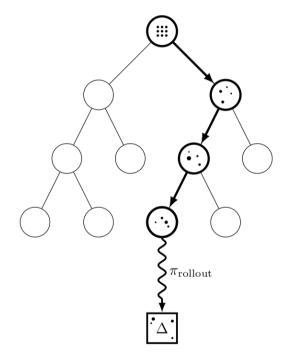


Figure: Simulation phase of IPFT.

 $\begin{array}{ccc} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$

Experiments

Conclusion

Approach - Information Particle Filter Tree

Adapt MCTS-based POMDP solver
 Approximate belief by particles
 Evaluate *ρ* on particle sets

→Online anytime algorithm→Continuous problems

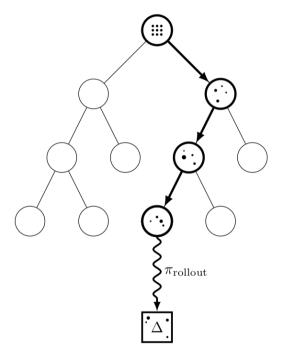


Figure: Simulation phase of IPFT.

Introduction Reward Shaping $0 \ 0 \ 0$ Information Particle Filter Tree Algorithm for Continuous ρ POMDPs Conclusion

Potential-Based Reward Shaping

Reward shaping changes the optimal policy

$$\tilde{R}(b_t, a_t) = R(b_t, a_t) + F(b_t, a_t, b_{t+1})$$

Potential-Based Reward Shaping

6

Reward shaping changes the optimal policy

$$\tilde{R}(b_t, a_t) = R(b_t, a_t) + F(b_t, a_t, b_{t+1})$$

BUT: Optimal policy is invariant under potential-based reward shaping for infinite horizon [2]

$$F(b_t, a_t, b_{t+1}) = \gamma \phi(b_{t+1}) - \phi(b_t)$$

[2] Eck et. al. "Potential-based reward shaping for finite horizon online POMDP planning." (2016)

 Introduction
 Reward Shaping
 IPFT
 Experiments
 Conclusion

 0 0 0 0
 0
 0
 0
 0
 0
 0
 0

 Information Particle Filter Tree Algorithm for Continuous ρPOMDPs
 ICML, July 2020
 ICML, July 2020
 ICML

Potential-Based Reward Shaping

Reward shaping changes the optimal policy

$$\tilde{R}(b_t, a_t) = R(b_t, a_t) + F(b_t, a_t, b_{t+1})$$

BUT: Optimal policy is invariant under potential-based reward shaping for infinite horizon [2]

$$F(b_t, a_t, b_{t+1}) = \gamma \phi(b_{t+1}) - \phi(b_t)$$

V* serves as a particularly effective potential

[2] Eck et. al. "Potential-based reward shaping for finite horizon online POMDP planning." (2016)

 Introduction
 Reward Shaping
 IPFT
 Experiments

 0 0 0 0
 0
 0
 0
 0

 Information Particle Filter Tree Algorithm for Continuous ρPOMDPs
 0
 0
 0

Conclusion o ICML, July 2020

Information-Theoretic Reward Shaping

Information measures have similar shape to V*

- Convex on belief space
- →Use as heuristic for V^*

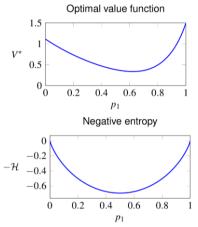


Figure: Shape of optimal value function and negative entropy.

Conclusion o ICML, July 2020

Information-Theoretic Reward Shaping

Information measures have similar shape to V*

- Convex on belief space
- \rightarrow Use as heuristic for V^*

Optimal value function

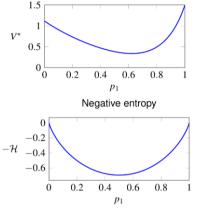
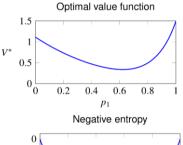


Figure: Shape of optimal value function and negative entropy.

Information-Theoretic Reward Shaping

Information measures have similar shape to V*

- Convex on belief space
- \rightarrow Use as heuristic for V^*



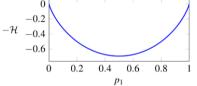


Figure: Shape of optimal value function and negative entropy.

$$\rho(b,a,b') = \int_S R(s,a)b(s)ds + \lambda \Delta \mathcal{I}(b,b')$$

Introduction Reward Shaping $\circ \circ$ $\circ \circ$ Information Particle Filter Tree Algorithm for Continuous ρ POMDPs

IPFT

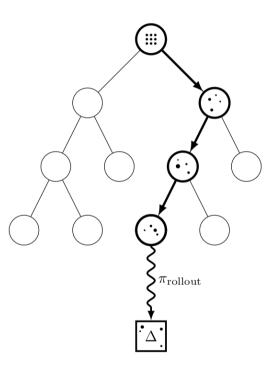
Experiments

Conclusion o

Solving $\rho {\rm POMDPs}$ in Continuous Domains

Based on Particle Filter Tree (PFT) Algorithm [3]

- MCTS \rightarrow continuous states
- Double Progressive Widening (DPW)
 - \rightarrow continuous actions & observations



[3] Sunberg and Kochenderfer, "Online Algorithms for POMDPs with Continuous State, Action, and Observation Spaces," (2018)

Figure: Simulation phase of PFT.

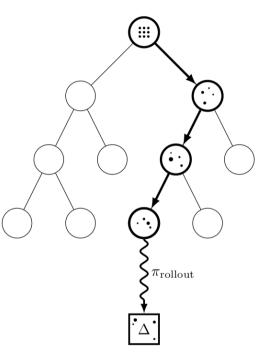
Introduction Reward Shaping o o o o POMDPs Information Particle Filter Tree Algorithm for Continuous pPOMDPs IPFT ● 0 Experiments

Conclusion

Solving $\rho {\rm POMDPs}$ in Continuous Domains

Based on Particle Filter Tree (PFT) Algorithm [3]

- MCTS → continuous states
- Double Progressive Widening (DPW)
 - \rightarrow continuous actions & observations
- Solves belief MDP
- Small weighted particle sets (m = 20)
- Update with mean particle return



[3] Sunberg and Kochenderfer, "Online Algorithms for POMDPs with Continuous State, Action, and Observation Spaces," (2018)

Reward Shaping

00

Figure: Simulation phase of PFT.

Experiments

IPFT

• 0

Conclusion

Information Particle Filter Tree Algorithm for Continuous ρ POMDPs

Introduction

Solving $\rho {\rm POMDPs}$ in Continuous Domains - Information Particle Filter Tree (IPFT)

Particle set approximates belief

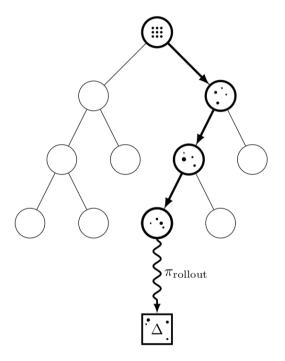


Figure: Simulation phase of IPFT.

Introduction Reward Shaping o o o o Information Particle Filter Tree Algorithm for Continuous pPOMDPs IPFT o● Experiments

Conclusion

ICML, July 2020

Solving $\rho {\rm POMDPs}$ in Continuous Domains - Information Particle Filter Tree (IPFT)

Particle set approximates belief

• Evaluate ρ on weighted particle sets, e.g.

 $-\mathcal{H}(b) = \int_{S} b(s) \log b(s) \, \mathrm{d}s \approx \sum_{i} w_{i} \log b(s_{i})$

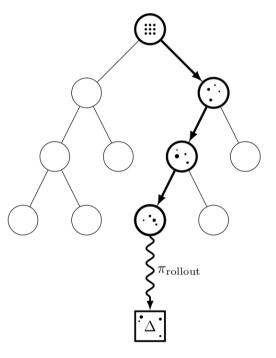


Figure: Simulation phase of IPFT.

Introduction Reward Shaping o o o o Information Particle Filter Tree Algorithm for Continuous pPOMDPs IPFT 0● Experiments 0000

Conclusion

ICML, July 2020 24

Solving $\rho {\rm POMDPs}$ in Continuous Domains - Information Particle Filter Tree (IPFT)

Particle set approximates belief

• Evaluate ρ on weighted particle sets, e.g.

Particle-based kernel density estimate \hat{b}

 $-\mathcal{H}(b) = \int_{S} b(s) \log b(s) \, \mathrm{d}s \approx \sum_{i} w_{i} \log \hat{b}(s_{i})$

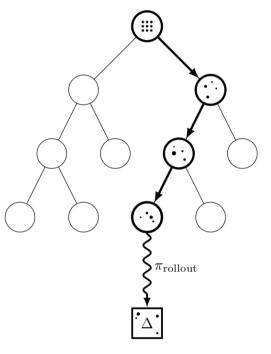


Figure: Simulation phase of IPFT.

Introduction Reward Shaping o o o o Information Particle Filter Tree Algorithm for Continuous pPOMDPs IPFT

Conclusion

ICML, July 2020

Solving ρ POMDPs in Continuous Domains -Information Particle Filter Tree (IPFT)

Particle set approximates belief

• Evaluate ρ on weighted particle sets, e.g.

Particle-based kernel density estimate \hat{b}

Averaging over many particle sets leads to

 $-\mathcal{H}(b) = \int_{S} b(s) \log b(s) \, \mathrm{d}s \approx \sum_{i} w_{i} \log \hat{b}(s_{i})$

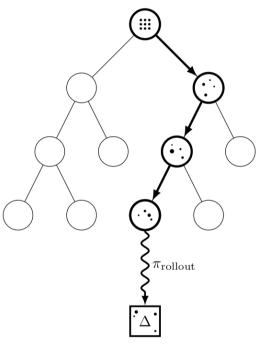


Figure: Simulation phase of IPFT.

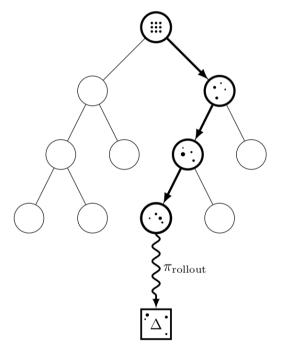
Reward Shaping Introduction 0000 00 Information Particle Filter Tree Algorithm for Continuous pPOMDPs

better entropy estimate

IPFT 0

Conclusion

Solving $\rho \rm POMDPs$ in Continuous Domains - Information Particle Filter Tree (IPFT)

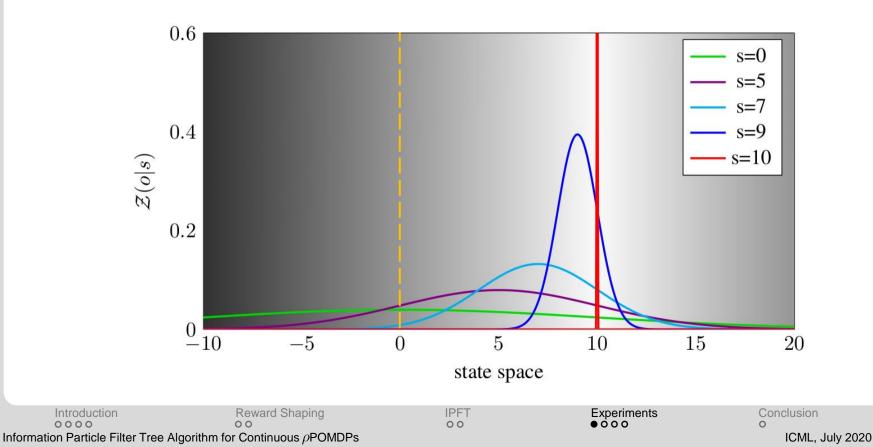


- Particle set approximates belief
- Evaluate ρ on weighted particle sets, e.g.
 - $-\mathcal{H}(b) = \int_{S} b(s) \log b(s) \, \mathrm{d}s \approx \sum_{i} w_{i} \log \hat{b}(s_{i})$
 - Particle-based kernel density estimate \hat{b}
- Averaging over many particle sets leads to better entropy estimate
- →IPFT can solve arbitrary ρ POMDPs on continuous domains

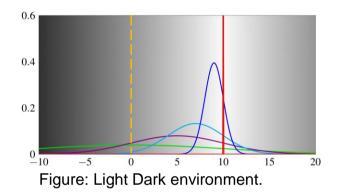
ICML, July 2020

IPFT O● Conclusion

Experiments – Light Dark

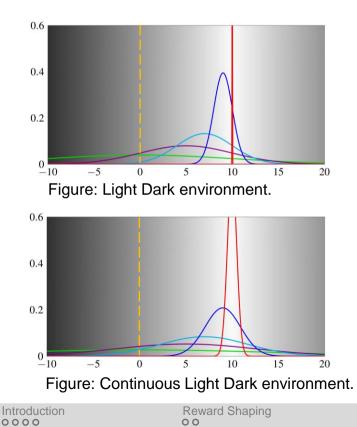


Experiments – Light Dark



- Goal: execute a = 0 at s = 0
- Consider action spaces $\mathbb{A}_{10} = \{-10, -1, 0, 1, 10\}$ $\mathbb{A}_3 = \{-3, -1, 0, 1, 3\}$

Experiments – Light Dark



- Goal: execute a = 0 at s = 0
- Consider action spaces $\mathbb{A}_{10} = \{-10, -1, 0, 1, 10\}$ $\mathbb{A}_3 = \{-3, -1, 0, 1, 3\}$
- Continuous state space
 Transition noise
 Increased observation noise

IPFT

00

Conclusion o

Results – Light Dark

	Light Dark problem						
Algorithm	action space \mathbb{A}_{10}	action space \mathbb{A}_3					
$IPFT(\Delta \mathcal{I}_1)$	58.2 ± 0.4	34.8 ± 0.7					
$\operatorname{IPFT}(\Delta \mathcal{I}_{\gamma})$	55.4 ± 0.5	27.8 ± 0.8					
POMCPOW	58.6 ± 0.5	-2.6 ± 0.9					
PFT-DPW	57.4 ± 0.5	33.9 ± 0.8					

Table: Mean reward and standard deviation of 1000 simulations.

Conclusion o

Results – Light Dark

	Light Dark problem			Continuous Light Dark problem				
Algorithm	action space	$e \mathbb{A}_{10}$	action space	$e \mathbb{A}_3$	action spac	$e \mathbb{A}_{10}$	action spac	$e \mathbb{A}_3$
IPFT($\Delta \mathcal{I}_1$)	58.2 ± 0.4		34.8 ± 0.7		35.7 ± 1.8		35.9 ± 1.0	
IPFT($\Delta \mathcal{I}_{\gamma}$)	55.4 ± 0.5		27.8 ± 0.8		38.4 ± 1.7		32.3 ± 1.4	
POMCPOW	58.6 ± 0.5		-2.6 ± 0.9		-8.5 ± 2.3		-2.9 ± 2.1	
PFT-DPW	57.4 ± 0.5		33.9 ± 0.8		-33.1 ± 2.4		-19.6 ± 2.3	

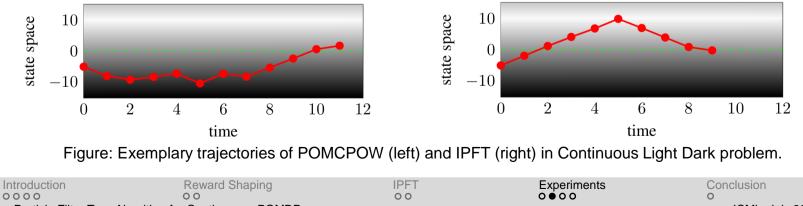
Table: Mean reward and standard deviation of 1000 simulations.

ICML, July 2020

Results – Light Dark

	Light Dark problem			Continuous Light Dark problem				
Algorithm	action space	$e \mathbb{A}_{10}$	action spac	$e \mathbb{A}_3$	action spac	$e \mathbb{A}_{10}$	action spac	$e \mathbb{A}_3$
IPFT($\Delta \mathcal{I}_1$)	58.2 ± 0.4		34.8 ± 0.7		35.7 ± 1.8		35.9 ± 1.0	
$\operatorname{IPFT}(\Delta \mathcal{I}_{\gamma})$	55.4 ± 0.5		27.8 ± 0.8		38.4 ± 1.7		32.3 ± 1.4	
POMCPOW	58.6 ± 0.5		-2.6 ± 0.9		-8.5 ± 2.3		-2.9 ± 2.1	
PFT-DPW	57.4 ± 0.5		33.9 ± 0.8		-33.1 ± 2.4		-19.6 ± 2.3	

Table: Mean reward and standard deviation of 1000 simulations.



Information Particle Filter Tree Algorithm for Continuous $\rho {\rm POMDPs}$

Laser Tag

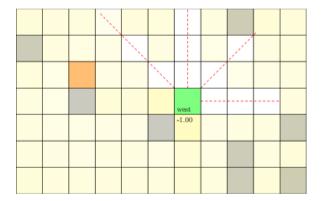


Figure: Laser Tag problem.

Introduction Reward Shaping

Conclusion o

Laser Tag

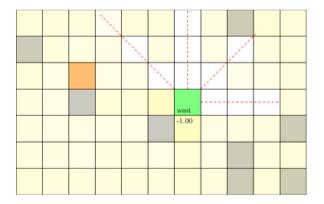


Figure: Laser Tag problem.

	Laser Tag				
$\operatorname{IPFT}(\Delta \mathcal{I}_1)$	-9.0 ± 0.2				
IPFT($\Delta \mathcal{I}_{\gamma}$)	-8.9 ± 0.2				
POMCPOW	-9.9 ± 0.2				
PFT-DPW	-12.0 ± 0.2				

Table: Mean reward and standard deviation of 1000 simulations.

_

Hyperparameter Sensitivity Analysis

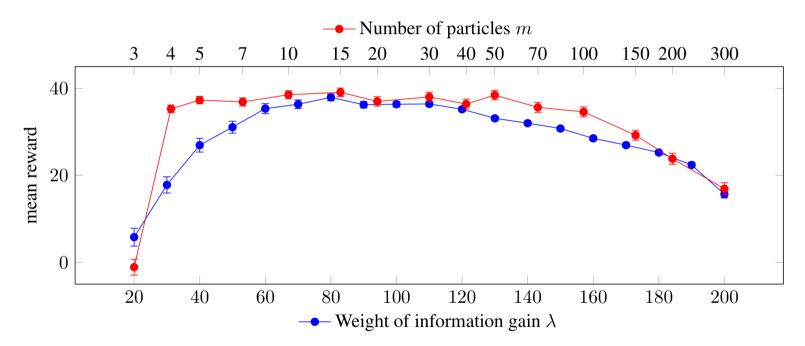


Figure: Mean reward and standard deviation of 1000 simulations of the Continuous Light Dark problem for different parameters.

Introduction Reward Shaping o o o o Information Particle Filter Tree Algorithm for Continuous pPOMDPs IPFT 00 Experiments

Conclusion o

Can POMDP solvers be improved by considering information?

Can POMDP solvers be improved by considering information?

Information-theoretic reward shaping
 Helps by guiding agent to informative beliefs

Can POMDP solvers be improved by considering information?

Information-theoretic reward shaping
 Helps by guiding agent to informative beliefs

How can ρ POMDPs on continuous domains be solved online?

Can POMDP solvers be improved by considering information?

Information-theoretic reward shaping
 Helps by guiding agent to informative beliefs

How can ρ POMDPs on continuous domains be solved online?

■ IPFT combines PFT algorithm with ρ POMDPs →General online solver for continuous ρ POMDPs

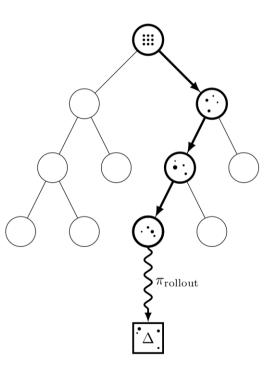


Figure: Simulation phase of IPFT.

Conclusion