An Imitation Learning Approach for Cache Replacement

Evan Z. Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, Junwhan Ahn

The Need for Faster Compute

(https://openai.com/blog/ai-and-compute/)

Small **cache** improvements can make large differences! (Beckman, 2019)

 E.g., 1% cache hit rate improvement → 35% decrease in latency (Cidon, et. al., 2016)

Caches are everywhere:

- CPU chips
- Operating Systems
- Databases
- Web applications

Our goal: Faster applications via better cache replacement policies

TL;DR:

- I. We approximate the **optimal** cache replacement policy by (implicitly) **predicting the future**
- II. Caching is an attractive benchmark for the general **reinforcement learning / imitation learning** communities

Goal: Evict the cache lines to maximize cache hits

Cache Replacement

Optimal decision

Cache Replacement

Reuse distance d₁(line): number of accesses from access t until the line is reused $d_0(A) = 1, d_0(B) > 2, d_0(C) = 2$ Cache A B C A B D A B D

Optimal Policy (Belady's): Evict the line with the greatest reuse distance (Belady, 1966)

Belady's Requires Future Information

Reuse distance d_t(line): number of accesses from access t until the line is reused

Problem: Computing reuse distance requires knowing the future

So in practice, we use **heuristics**, e.g.:

- Least-recently used (LRU)
- Most-recently used (MRU)

... but these **perform poorly** on complex access patterns

Leveraging Belady's

Idea: approximate Belady's from past accesses

Prior Work

Current **state-of-the-art** (Shi et. al., '19, Jain et. al., '18)

Prior Work

Current **state-of-the-art** (Shi et. al., '19, Jain et. al., '18)

+ binary classification is relatively easy to learn

- traditional algorithm can't **express** optimal policy

Google Research

Similar to Wang, et. al., 2019

Google Research

Similar to Wang, et. al., 2019

Google Research

Similar to Wang, et. al., 2019

Leveraging the Optimal Policy

Reuse Distance as an Auxiliary Task

Observation: predicting reuse distance is correlated with cache replacement

• Cast this as an **auxiliary task** (Jaderberg, et. al., 2016)

Results

Optimal cache-hit rate

~19% cache-hit rate increase over Glider (Shi, et. al., 2019) on memory-intensive SPEC2006 applications (Jaleel, et. al., 2009)

Google Research

~64% cache-hit rate increase over LRU on Google Web Search

A Note on Practicality

This work: Establish a proof-of-concept

Per-byte address embedding

- Reduce embedding size from **100MB** to **<10KB**
- ~6% cache-hit rate increase on SPEC2006 vs. Glider
- ~59% cache-hit rate increase on Google Web Search vs. LRU

A Note on Practicality

This work: Establish a proof-of-concept

Per-byte address embedding

- Reduce embedding size from **100MB** to **<10KB**
- ~6% cache-hit rate increase on SPEC2006 vs. Glider
- ~59% cache-hit rate increase on Google Web Search vs. LRU

Future work: Production ready learned policies

- **Smaller models** via distillation (Hinton, et. al., 2015), pruning (Janowsky, 1989, Han, et. al., 2015, Sze, et. al., 2017), or quantization
- Target domains with **longer latency** and **larger caches** (e.g., software Google Research caches)

A New Imitation / Reinforcement Learning Benchmark

Bellemare, et. al., 2012, Silver, et. al., 2017, OpenAl, 2019, Vinyals, et. al., 2019

- + plentiful data
- delayed real-world utility

Levine, et. al., 2016, Lillicrap, et. al., 2015

- limited / expensive data
- + immediate real-world impact

- + plentiful data
- + immediate real-world impact

Google Research

Open-source cache replacement Gym environment coming soon!

Takeaways

- A new **state-of-the-art** approach for cache replacement by **imitating** the oracle policy
 - Future work: making this **production ready**

• A new **benchmark** for imitation learning / reinforcement learning research