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The Need for Faster Compute

(https://openai.com/blog/ai-and-compute/)

Small cache improvements can make large 
differences! (Beckman, 2019)
● E.g., 1% cache hit rate improvement → 35% 

decrease in latency (Cidon, et. al., 2016)

Caches are everywhere:
● CPU chips
● Operating Systems
● Databases
● Web applications

Our goal: Faster applications via better cache 
replacement policies 

https://openai.com/blog/ai-and-compute/


TL;DR:

I. We approximate the optimal cache replacement policy by 
(implicitly) predicting the future

II. Caching is an attractive benchmark for the general 
reinforcement learning / imitation learning communities
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Goal: Evict the cache lines to maximize cache hits   
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Reuse distance dt(line): number of accesses from access t until the line is reused
d0(A) = 1, d0(B) > 2, d0(C) = 

2

Optimal Policy (Belady’s): Evict the line with the greatest reuse 
distance (Belady, 1966)



Belady’s Requires Future Information

Reuse distance dt(line): number of accesses from access t until the line is 
reused

Problem: Computing reuse distance requires knowing the future

So in practice, we use heuristics, e.g.:
● Least-recently used (LRU)
● Most-recently used (MRU)

… but these perform poorly on complex access patterns



Leveraging Belady’s

Idea: approximate Belady’s from past accesses
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Prior Work

+ binary classification is relatively 
easy to learn

- traditional algorithm can’t 
express optimal policy
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. . .

Our proposal

Our Approach
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Cache Replacement Markov Decision Process
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Similar to Wang, et. al., 2019
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Leveraging the Optimal Policy

Typical imitation learning setting
(Pomerlau, 1991, Ross, et. al., 2011, Kim, et. al., 2013)

state

Learned policy

optimal action

Learned policy Approximate optimal policy

state

optimize, e.g., 

Observation: Not all errors are equally bad
● Learning from optimal policy yields 

greater training signal

Concretely: minimize a ranking loss



Reuse distance

Reuse Distance as an Auxiliary Task

Observation: predicting reuse distance is correlated with cache replacement
● Cast this as an auxiliary task (Jaderberg, et. al., 2016) 
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Results

LRU cache-hit rate

Optimal cache-hit rate

~19% cache-hit rate increase over Glider (Shi, et. al., 2019) on memory-intensive SPEC2006 
applications (Jaleel, et. al., 2009)

~64% cache-hit rate increase over LRU on Google Web Search



This work: Establish a proof-of-concept

A Note on Practicality

12 ...Address: 0x C5 A1
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Linear Layer

address embedding

Per-byte address embedding
● Reduce embedding size from 100MB to <10KB
● ~6% cache-hit rate increase on SPEC2006 vs. 

Glider
● ~59% cache-hit rate increase on Google Web 

Search vs. LRU
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Future work: Production ready learned policies
● Smaller models via distillation (Hinton, et. al., 2015), pruning (Janowsky, 1989, 

Han, et. al., 2015, Sze, et. al., 2017), or quantization
● Target domains with longer latency and larger caches (e.g., software 

caches) 



A New Imitation / Reinforcement Learning Benchmark

+ plentiful data
- delayed real-world utility

- limited / expensive data
+ immediate real-world impact

+ plentiful data
+ immediate real-world impact
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Vinyals, et. al., 2019

Levine, et. al., 2016, Lillicrap, et. al., 2015

Open-source cache replacement Gym environment coming soon!



Takeaways

● A new state-of-the-art approach for cache replacement by imitating the 
oracle policy
○ Future work: making this production ready

● A new benchmark for imitation learning / reinforcement learning research


