
Evan Z. Liu, Milad Hashemi, Kevin Swersky,
Parthasarathy Ranganathan, Junwhan Ahn

An Imitation Learning Approach
for Cache Replacement

The Need for Faster Compute

(https://openai.com/blog/ai-and-compute/)

Small cache improvements can make large
differences! (Beckman, 2019)
● E.g., 1% cache hit rate improvement → 35%

decrease in latency (Cidon, et. al., 2016)

Caches are everywhere:
● CPU chips
● Operating Systems
● Databases
● Web applications

Our goal: Faster applications via better cache
replacement policies

https://openai.com/blog/ai-and-compute/

TL;DR:

I. We approximate the optimal cache replacement policy by
(implicitly) predicting the future

II. Caching is an attractive benchmark for the general
reinforcement learning / imitation learning communities

MissHit (100x faster)

Cache Replacement

Miss

BA C

D A

BA D

C

BA DCache

Accesses

Evict

Goal: Evict the cache lines to maximize cache hits

Miss

Cache Replacement

C

C

Cache

Accesses

Evict

BA D

D A

BA B DA

HitMiss

Mistake

Cache Replacement

C

C

Cache

Accesses

BA D

D

B DA

HitMiss

BA

A

Optimal decision

Miss

Cache Replacement

C

C

Cache

Accesses

BA D

D

B DA

HitMiss

BA

A

Miss

Reuse distance dt(line): number of accesses from access t until the line is reused
d0(A) = 1, d0(B) > 2, d0(C) =

2

Optimal Policy (Belady’s): Evict the line with the greatest reuse
distance (Belady, 1966)

Belady’s Requires Future Information

Reuse distance dt(line): number of accesses from access t until the line is
reused

Problem: Computing reuse distance requires knowing the future

So in practice, we use heuristics, e.g.:
● Least-recently used (LRU)
● Most-recently used (MRU)

… but these perform poorly on complex access patterns

Leveraging Belady’s

Idea: approximate Belady’s from past accesses

Past accesses Current
access

Future
accesses

.

Learned
Model Belady’s

Predicted decision Optimal decision
Training

Prior Work

Past
accesses

Current
access

Current
cache state

Current line cache
friendly or averse?

Evict line X
Trained on

Belady’s

Traditional
Algorithm

Hawkeye /
Glider

Current state-of-the-art
(Shi et. al., ‘19, Jain et. al., ‘18)

Prior Work

+ binary classification is relatively
easy to learn

- traditional algorithm can’t
express optimal policy

Past
accesses

Current
access

Current
cache state

Current line cache
friendly or averse?

Evict line X
Trained on

Belady’s

Traditional
Algorithm

Hawkeye /
Glider

Current state-of-the-art
(Shi et. al., ‘19, Jain et. al., ‘18)

. . .

Our proposal

Our Approach

Past
accesses

Current
access

Model

Current
cache state

Evict line X

Our contribution:
Directly approximate Belady’s

via imitation learning

Trained on
Belady’s

Past
accesses

Current
access

Current
cache state

Current line cache
friendly or averse?

Evict line X
Trained on

Belady’s

Traditional
Algorithm

Hawkeye /
Glider

Current state-of-the-art
(Shi et. al., ‘19, Jain et. al., ‘18)

Cache Replacement Markov Decision Process

MissHitMiss

BA C

D

B D

C

BA DCache

Accesses

Evict

A

A

Similar to Wang, et. al., 2019

Past accesses Current access MissHitMiss

BA C

D

B D

C

BA DCache

Accesses

Evict

A

A

Current cache
contents

Cache Replacement Markov Decision Process

Similar to Wang, et. al., 2019

MissHitMiss

BA C

D

B D

C

BA D

A

ACache

Accesses

Cache Replacement Markov Decision Process

Similar to Wang, et. al., 2019

BA DCache

Accesses

Evict

MissHitMiss

D CA

BA C B DA

Cache Replacement Markov Decision Process

Similar to Wang, et. al., 2019

Leveraging the Optimal Policy

Typical imitation learning setting
(Pomerlau, 1991, Ross, et. al., 2011, Kim, et. al., 2013)

state

Learned policy

optimal action

Learned policy Approximate optimal policy

state

optimize, e.g.,

Observation: Not all errors are equally bad
● Learning from optimal policy yields

greater training signal

Concretely: minimize a ranking loss

Reuse distance

Reuse Distance as an Auxiliary Task

Observation: predicting reuse distance is correlated with cache replacement
● Cast this as an auxiliary task (Jaderberg, et. al., 2016)

State st

State
embedding

Policy

Loss

Results

LRU cache-hit rate

Optimal cache-hit rate

~19% cache-hit rate increase over Glider (Shi, et. al., 2019) on memory-intensive SPEC2006
applications (Jaleel, et. al., 2009)

~64% cache-hit rate increase over LRU on Google Web Search

This work: Establish a proof-of-concept

A Note on Practicality

12 ...Address: 0x C5 A1

Byte 1 Byte 2 Byte 3

Linear Layer

address embedding

Per-byte address embedding
● Reduce embedding size from 100MB to <10KB
● ~6% cache-hit rate increase on SPEC2006 vs.

Glider
● ~59% cache-hit rate increase on Google Web

Search vs. LRU

Per-byte address embedding
● Reduce embedding size from 100MB to <10KB
● ~6% cache-hit rate increase on SPEC2006 vs.

Glider
● ~59% cache-hit rate increase on Google Web

Search vs. LRU

This work: Establish a proof-of-concept

A Note on Practicality

12 ...Address: 0x C5 A1

Byte 1 Byte 2 Byte 3

Linear Layer

address embedding

Future work: Production ready learned policies
● Smaller models via distillation (Hinton, et. al., 2015), pruning (Janowsky, 1989,

Han, et. al., 2015, Sze, et. al., 2017), or quantization
● Target domains with longer latency and larger caches (e.g., software

caches)

A New Imitation / Reinforcement Learning Benchmark

+ plentiful data
- delayed real-world utility

- limited / expensive data
+ immediate real-world impact

+ plentiful data
+ immediate real-world impact

Miss

BA C

D

Evict
Bellemare, et. al., 2012,
Silver, et. al., 2017, OpenAI, 2019,
Vinyals, et. al., 2019

Levine, et. al., 2016, Lillicrap, et. al., 2015

Open-source cache replacement Gym environment coming soon!

Takeaways

● A new state-of-the-art approach for cache replacement by imitating the
oracle policy
○ Future work: making this production ready

● A new benchmark for imitation learning / reinforcement learning research

