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Graph-structured data are ubiquitous

(a) molecules (b) protein regulation

(c) social networks (d) chemical pathways

Dexiong Chen Graph Convolutional Kernel Networks 2 / 15



Learning graph representations

State-of-the-art models for representing graphs
Deep learning for graphs: graph neural networks (GNNs)
Graph kernels: Weisfeiler-Lehman (WL) graph kernels
Hybrid models attempt to bridge both worlds: graph neural tangent kernels

Our model:
A new type of multilayer graph kernel: more expressive than WL kernels
Learning easy-to-regularize and scalable unsupervised graph representations
Learning supervised graph representations like GNNs
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Graphs with node attributes

u

G = (V, E , a : V → R3)

a(u) = [0.3, 0.8, 0.5]

A graph is defined as a triplet (V, E , a);
V and E correspond to the set of vertices and edges;
a : V → Rd is a function assigning attributes to each node.
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Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector ϕ(G ) in H, which lends itself to learning tasks.

A large class of graph kernel mappings can be written in the form

ϕ(G ) :=
∑
u∈V

ϕbase(`G (u)) where ϕbase embeds some local patterns `G (u) to H.

[Lei et al., 2017, Kriege et al., 2019]
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Basic kernels: walk and path kernel mappingsWalks 6= paths

433 / 666

Pk(G , u) := paths of length k from node u in G . The k-path mapping is

ϕpath(u) :=
∑

p∈Pk (G ,u)

δa(p)(·)

a(p): concatenated attributes in p; δ: the Dirac function.
ϕpath(u) can be interpreted as a histogram of paths occurrences.

Path kernels are more expressive than walk kernels, but less preferred for
computational reasons.
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A relaxed path kernel

Walks 6= paths

433 / 666

ϕpath(u) =
∑

p∈Pk (G ,u)

δa(p)(·)

=⇒
∑

p∈Pk (G ,u)

e−
α
2 ‖a(p)−·‖

2
.

Issues of the path kernel mapping:
δ allows hard comparison between paths thus only works for discrete attributes.
δ is not differentiable, which cannot be “optimized” with back-propagation.

Relax it with a “soft” and differentiable mapping
interpreted as the sum of Gaussians centered at each path features from u.
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One-layer GCKN: a closer look on the relaxed path kernel

We define the one-layer GCKN as the relaxed path kernel mapping

ϕ1(u) :=
∑

p∈Pk (G ,u)

e−
α1
2 ‖a(p)−·‖

2
=

∑
p∈Pk (G ,u)

Φ1(a(p)) ∈ H1.

This formula can be divided into 3 steps:
path extraction: enumerating all Pk(G , u)
kernel mapping: evaluating Gaussian embedding Φ1 of path features
path aggregation: aggregating the path embeddings

We obtain a new graph with the same topology but different features

(V, E , a)
ϕpath−−−→ (V, E , ϕ1)
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Construction of one-layer GCKN

u

a(u) ∈ Rd

(V , E , a : V → Rd)

path extraction

kernel mapping

path aggregation

u

u

ϕ1(u) ∈ H1

u u u

p1 p2 p3

Φ1(a(p1))
Φ1(a(p2))

Φ1(a(p3))

kernel mapping

H1

path aggregation

ϕ1(u) := Φ1(a(p1)) + Φ1(a(p2)) + Φ1(a(p3))

(V , E , ϕ1 : V → H1)
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From one-layer to multilayer GCKN

We can repeat applying ϕpath to the new graph

(V, E , a)
ϕpath−−−→ (V, E , ϕ1)

ϕpath−−−→ (V, E , ϕ2)
ϕpath−−−→ . . .

ϕpath−−−→ (V, E , ϕj).

ϕj(u) represents the information about a neighborhood of u.
Final graph representation at layer j , ϕj(G ) =

∑
u∈V ϕj(u).

Why is the multilayer model interesting ?
applying ϕpath once can capture paths: GCKN-path;
applying twice can capture subtrees: GCKN-subtree;
so applying even more times may capture higher-order structures ?
Long paths cannot be enumerated due to computational complexity, yet multilayer
model can capture long-range substructures.
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Scalable approximation of Gaussian kernel mapping

ϕpath(u) =
∑

p∈Pk (G ,u)

Φ(a(p))

Φ(x) = e−
α
2 ‖x−·‖

2 ∈ H is infinite-dimensional and can be expensive to compute.

Nyström provides a finite-dimensional approximation Ψ(x) ∈ Rq by orthogonally
projecting Φ(x) onto some finite-dimensional subspace:

span(Φ(z1), . . . ,Φ(zq)) parametrized by Z = {z1, . . . , zq},

where zj ∈ Rdk can be interpreted as path features.
The parameters Z can be learned by

(unsupervised) K-means on the set of path features;
(supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b]
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Experiments on graphs with discrete attributes
MUTAG

PROTEINS

PTC

NCI1IMDB-B

IMDB-M

COLLAB

-10

0

10
12

WL subtree
GNTK
GCN
GIN
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WL subtree
kernel.
GCKN-path already
outperforms the baselines.
Increasing number of layers
brings larger improvement.
Supervised learning does not
improve performance, but
leads to more compact
representations.

[Shervashidze et al., 2011, Du et al., 2019, Xu et al., 2019, Kipf and Welling, 2017]
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Experiments on graphs with continuous attributes
ENZYMES

PROTEINS

BZR

COX2 -5

0

5

WWL
GNTK
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WWL kernel.
Results similar to discrete
case.
Path features seem
presumably predictive enough.

[Du et al., 2019, Togninalli et al., 2019]
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Model interpretation for mutagenicity prediction

Idea: find the minimal connected component that preserves the prediction.

GCKN

Original

[Ying et al., 2019]
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Take-home messages

GCKN is a multilayer kernel for graphs based on paths, which allows to control
the trade-off between computation and expressiveness.
Its graph representations can be learned in both supervised and unsupervised
fashions. Unsupervised models are easy-to-regularize and scalable.
A straightforward model interpretation is also provided.
Our code is freely available at https://github.com/claying/GCKN.
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Weisfeiler-Lehman subtree kernel

SHERVASHIDZE, SCHWEITZER, VAN LEEUWEN, MEHLHORN AND BORGWARDT
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5

6

1

1 3 1 51 2 4 5

2 63

Figure 1: A subtree pattern of height 2 rooted at the node 1. Note the repetitions of nodes in the
unfolded subtree pattern on the right.

computer vision application, Harchaoui and Bach (2007) have proposed a dynamic programming-
based approach to speed up the computation of the randomwalk kernel, but at the cost of considering
walks of fixed size. Suard et al. (2005) and Vert et al. (2009) present other applications of random
walk kernels in computer vision. Mahé et al. (2004) have proposed extensions of marginalized
graph kernels (Kashima et al., 2003) for a chemoinformatics application: here the authors relabel
vertices of graphs using the Morgan index (Morgan, 1965), which increases the specificity of labels
by augmenting them with information on the number of walks starting at a node, and thereby also
helps reduce the runtime, as fewer vertices will match. The shortest path kernel by Borgwardt and
Kriegel (2005) counts pairs of shortest paths having the same source and sink labels and the same
length in two graphs. The runtime of this kernel scales as O(n4).

The second class, graph kernels based on limited-size subgraphs, includes kernels based on so-
called graphlets, which represent graphs as counts of all types of subgraphs of size k ∈ {3,4,5}.
There exist efficient computation schemes for these kernels based on sampling or exploitation of
the low maximum degree of graphs (Shervashidze et al., 2009), but these apply to unlabeled graphs
only. Cyclic pattern kernels (Horváth et al., 2004) count pairs of matching cyclic patterns in two
graphs. Computing this kernel for a general graph is unfortunately NP-hard, however there exist
special cases where the kernel can be efficiently computed. The kernel, recently proposed by Costa
and De Grave (2010), can also be classified in this category: It counts identical pairs of rooted
subgraphs containing nodes up to a certain distance from the root, the roots of which are located at
a certain distance from each other, in two graphs.

The first kernel from the third class, subtree kernels, was defined by Ramon and Gärtner (2003).
Intuitively, to compare graphs G and G′, this kernel iteratively compares all matchings between
neighbours of two nodes v from G and v′ from G′. In other words, for all pairs of nodes v from
G and v′ from G′, it counts all pairs of matching substructures in subtree patterns rooted at v and
v′. The runtime complexity of the subtree kernel for a data set of N graphs is O(N2n2h 4d). For a
detailed description of this kernel see Section 3.2.2.

The subtree kernels by Mahé and Vert (2009) and Bach (2008) refine the Ramon-Gärtner kernel
for applications in chemoinformatics and hand-written digit recognition. BothMahé and Vert (2009)
and Bach (2008) propose to consider α-ary subtrees with at most α children per node. This restricts
the set of matchings to matchings of up to α nodes, but the runtime complexity is still exponential

2542

Enumerating subtree patterns can be exponentially costly. Is there a fast way ?
WL algorithm: iterative enumeration for graphs with discrete node labels.

We define a sequence of node labels initialized with a0 = a.
At iteration i ≥ 1, ai (u) = hash([ai−1(u), sort({ai−1(v) | v ∈ N (u)})]).

WL subtree kernel at depth k is defined as

κsubtree(u, u
′) = δ(ai (u), a′i (u

′))

[Shervashidze et al., 2011]
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Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels κwalk and κsubtree ?

WL subtree kernel as a 2-layer walk kernel

LetM(u, u′) be the set of exact matchings of subsets of the neighborhoods of two
nodes u and u′. For any u ∈ G and u′ ∈ G ′ such that |M(u, u′)| = 1,

κsubtree(u, u
′) = δ(ϕwalk(u), ϕ′walk(u′)), (1)

where ϕwalk is the feature map of κwalk satisfying ϕwalk(u) =
∑

p∈Wk (G ,u)
ϕδ(p) .

A sufficient condition for |M(u, u′)| = 1: u and u′ have same degrees and both
of them have distinct neighbors.
If we replace ϕpath instead of ϕwalk we capture subtrees without repeated nodes !
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Can we go beyond subtrees to higher order patterns ?
Composing path kernels !
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