FR-Train: A Mutual Information-based Fair and Robust Training

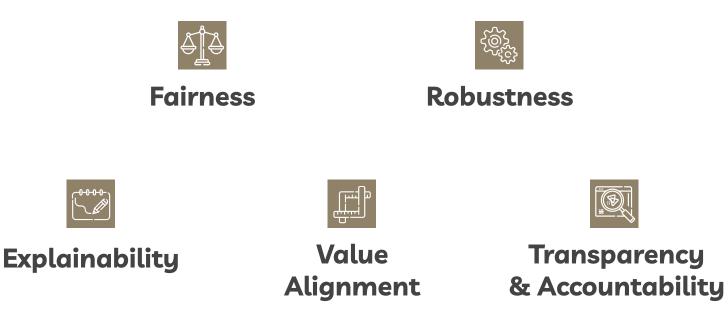
Yuji Roh, Kangwook Lee, Steven E. Whang, Changho Suh

Yuji Roh, Data Intelligence Lab, KAIST

"AI has significant potential to help solve challenging problems,

including by advancing medicine, understanding language, and fueling scientific discovery. To realize that potential, it's critical that AI is used and developed **responsibly**."

"Moving forward, "build for performance" will not suffice as an AI design paradigm. We must learn how to build, evaluate and monitor for **trust**."



Data-related

Transparency & Accountability

Two approaches

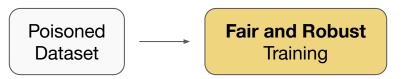
Two-step approach: Sanitize data -> Fair training
 Downside: very difficult to "decouple" poisoning and bias

Two approaches

Two-step approach: Sanitize data -> Fair training
 Downside: very difficult to "decouple" poisoning and bias

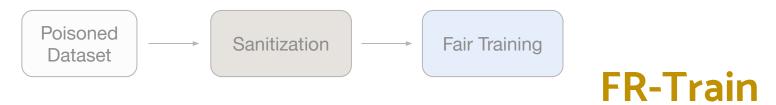
• **Holistic** approach: Fair & Robust training

Performing the two operations along with model training results in much better performance



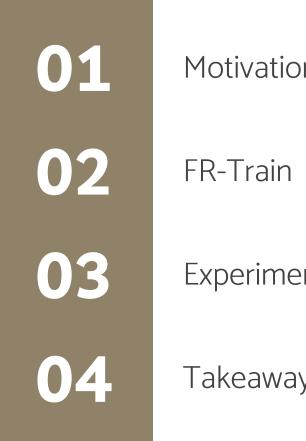
Two approaches

Two-step approach: Sanitize data -> Fair training
 Downside: very difficult to "decouple" poisoning and bias



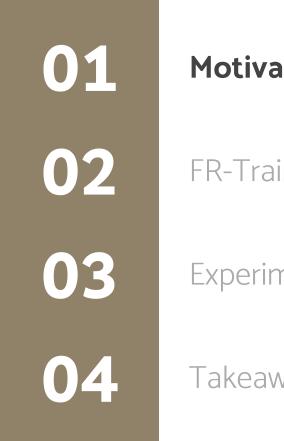
• **Holistic** approach: Fair & Robust training

Performing the two operations along with model training results in much better performance



Motivation

Experiments



Motivation

FR-Train

Experiments

Data-related

Transparency & Accountability

Fairness

- A machine learning model learns bias and discriminations in the data
- The fairness of a (binary) classifier can be defined in various ways:
 - Demographic Parity
(\Leftrightarrow Disparate Impact)Equalized Odds $\mathbb{P}(\hat{Y} = 1|Z = 0) \approx \mathbb{P}(\hat{Y} = 1|Z = 1)$ $\mathbb{P}(\hat{Y} = 1|Z = 0, Y = 1) \approx \mathbb{P}(\hat{Y} = 1|Z = 1, Y = 1)$ $\mathbb{P}(\hat{Y} = 1|Z = 0) \approx \mathbb{P}(\hat{Y} = 1|Z = 1)$ $\mathbb{P}(\hat{Y} = 1|Z = 0, Y = 0) \approx \mathbb{P}(\hat{Y} = 1|Z = 1, Y = 0)$
- The level of fairness can be measured as a ratio or difference

XFeature YLabel Group attribute \hat{Y} Predicted label

Fairness

Ο

- A machine learning model learns bias and discriminations in the data
- The fairness of a (binary) classifier can be defined in various ways:

$$\begin{array}{c} \begin{array}{c} \textbf{Demographic Parity} \\ (\Leftrightarrow \textbf{Disparate Impact}) \\ \mathbb{P}(\hat{Y}=1|Z=0) \approx \mathbb{P}(\hat{Y}=1|Z=1) \end{array} \end{array} \qquad \begin{array}{c} \mathbb{P}(\hat{Y}=1|Z=0,Y=1) \approx \mathbb{P}(\hat{Y}=1|Z=1,Y=1) \\ \mathbb{P}(\hat{Y}=1|Z=0,Y=0) \approx \mathbb{P}(\hat{Y}=1|Z=1,Y=0) \end{array} \\ \begin{array}{c} \mathbb{P}(\hat{Y}=1|Z=0,Y=0) \approx \mathbb{P}(\hat{Y}=1|Z=1,Y=0) \end{array} \end{array}$$
The level of fairness can be measured as a ratio or difference
$$DI := min(\frac{\mathbb{P}(\hat{Y}=1|Z=0)}{\mathbb{P}(\hat{Y}=1|Z=1)}, \frac{\mathbb{P}(\hat{Y}=1|Z=1)}{\mathbb{P}(\hat{Y}=1|Z=0)}) \end{array}$$

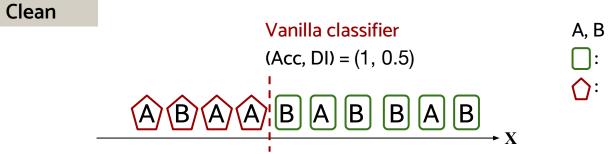
Robustness

- Datasets are **easy to publish** nowadays, but as a result **easy to "poison"** as well
 - Poison = noisy, subjective, or even adversarial

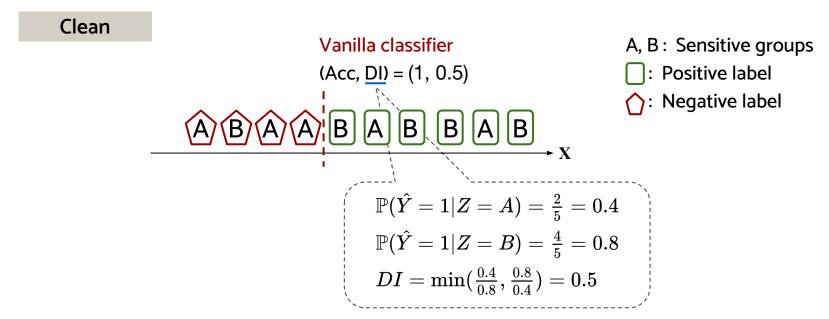
- Attacker's goal : Increase the test loss by poisoning data
- Defender's goal : Train a classifier with small test loss
- Already a serious issue in federated learning

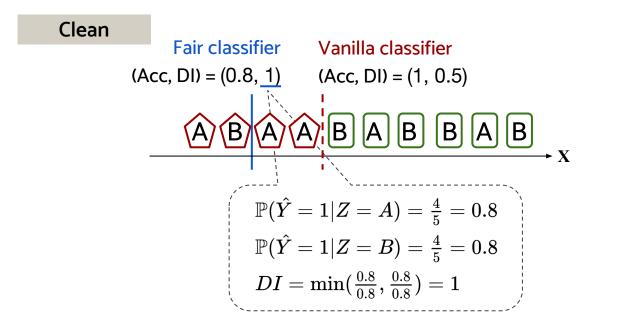
Fairness + Robustness

What happens if we just apply a fairness-aware algorithm on a poisoned dataset?May result in a strictly **suboptimal** (accuracy, fairness) than vanilla training

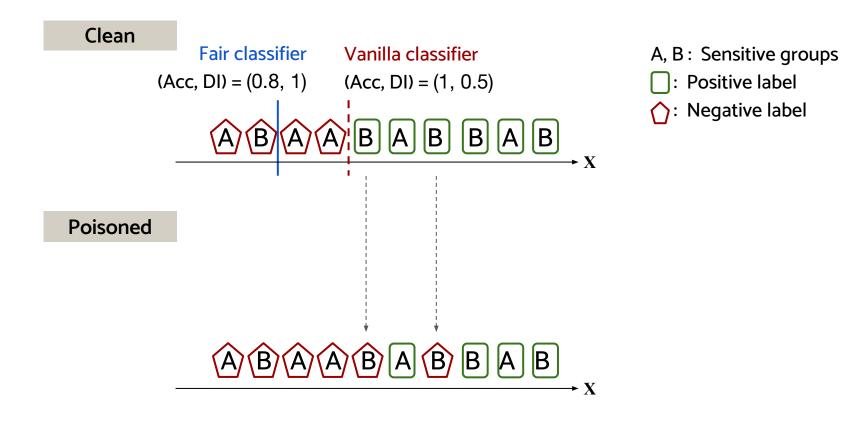


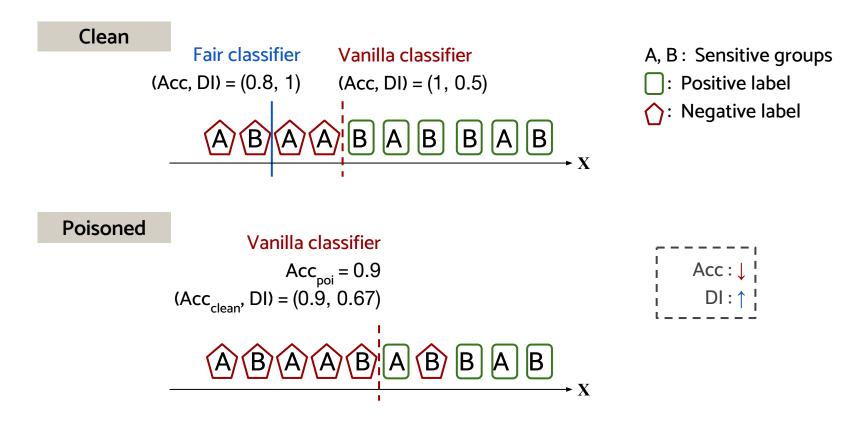
A, B: Sensitive groups : Positive label : Negative label

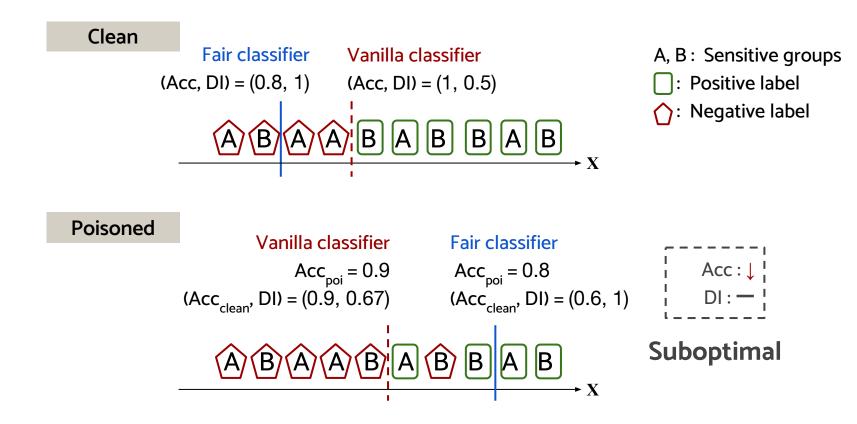




A, B: Sensitive groups : Positive label : Negative label





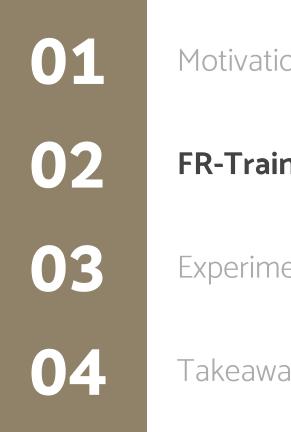


Fairness + Robustness

What happens if we just apply a fairness-aware algorithm on a poisoned dataset?

- May result in a strictly **suboptimal** (accuracy, fairness) than vanilla training

We need a holistic approach to fair and robust training. FR-Train!



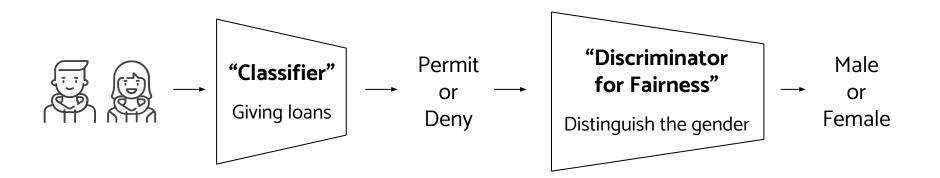
Motivation

FR-Train

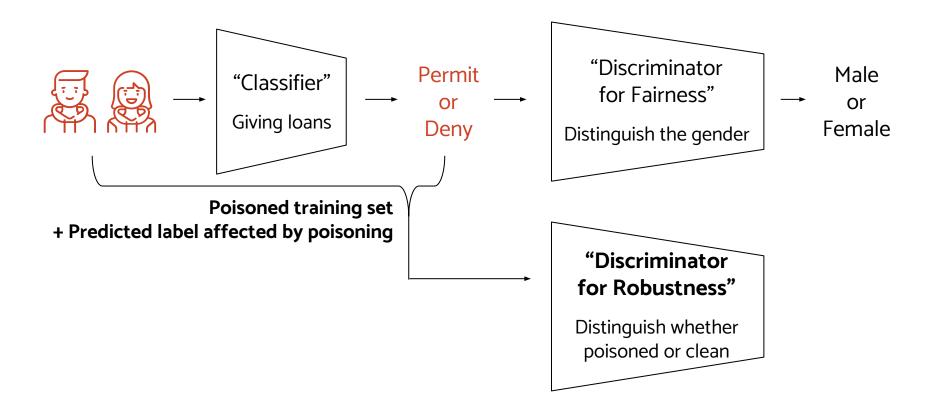
Experiments

FR-Train - Main contributions

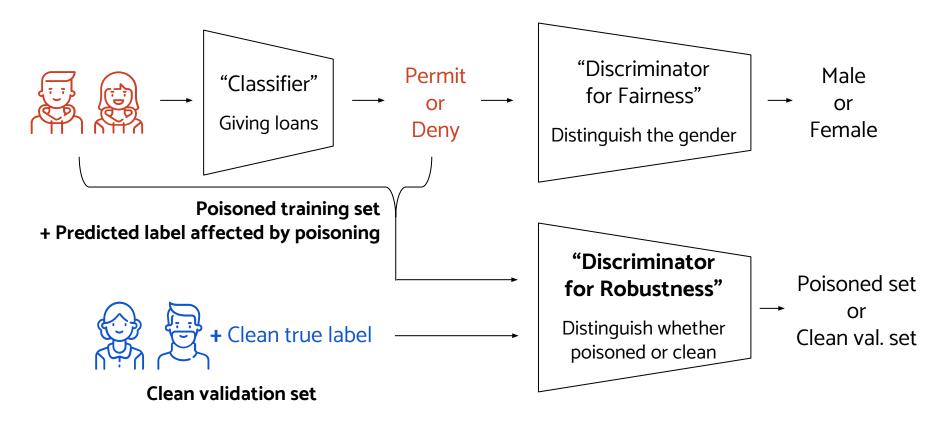
- FR-Train is a **holistic framework** for fair and robust training
- Extends a state-of-the-art fairness-only method called Adversarial Debiasing
 - Provides a novel mutual information (MI)-based interpretation of adversarial learning
 - Adds a robust discriminator that uses a small clean validation set for data sanitization
- We also propose crowdsourcing methods for constructing a clean validation set



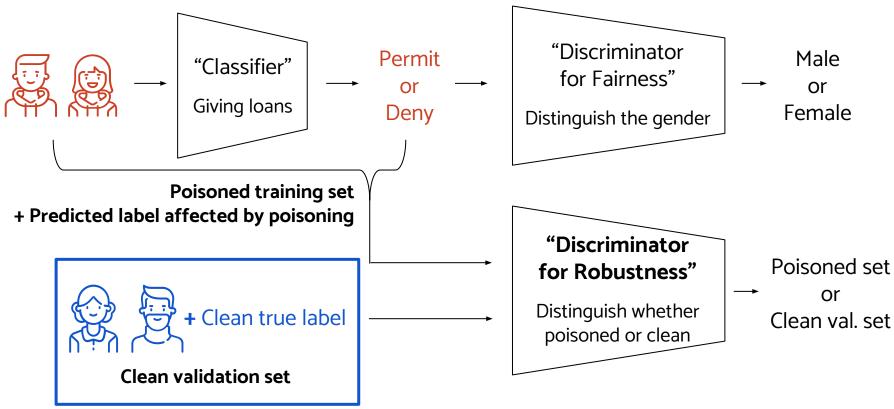
FR-Train



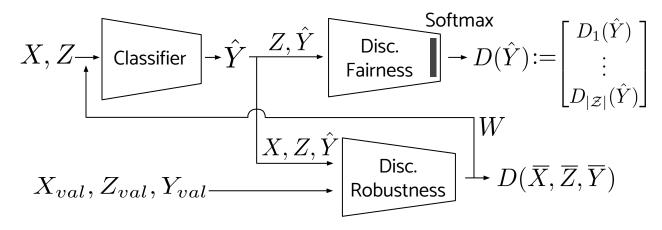
FR-Train



FR-Train



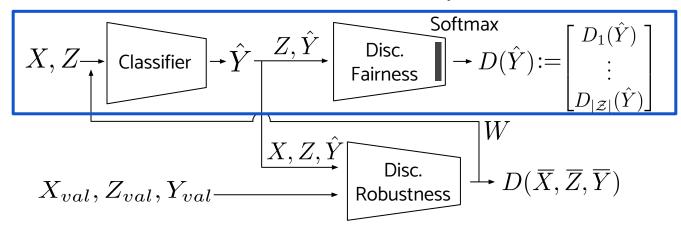
Constructed with crowdsourcing



Theorem 1 - Fairness

$$I(Z; \hat{Y}) = \max_{D_z(\hat{y}): \sum_z D_z(\hat{y})=1, \forall \hat{y}} \sum_{z \in \mathcal{Z}} P_Z(z) \mathbb{E}_{P_{\hat{Y}|z}} \left[\log D_z(\hat{Y}) \right] + H(Z)$$

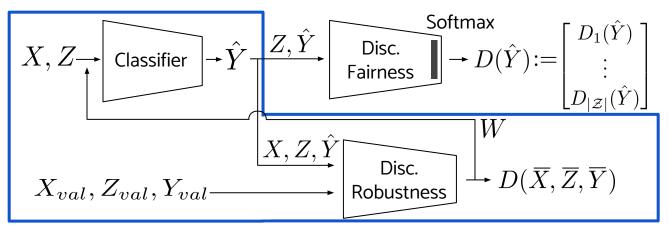
$$I(V; \overline{X}, \overline{Z}, \overline{Y}) = \max_{D_v(x, z, y): \sum_v D_v(x, z, y) = 1, \ \forall (x, z, y)} \sum_{v \in \mathcal{V}} P_V(v) \mathbb{E}_{P_{\overline{X}, \overline{Z}, \overline{Y}|v}} \left[\log D_v(\overline{X}, \overline{Z}, \overline{Y}) \right] + H(V)$$



Theorem 1 - Fairness

$$I(Z; \hat{Y}) = \max_{D_z(\hat{y}): \sum_z D_z(\hat{y}) = 1, \ \forall \hat{y}} \sum_{z \in \mathcal{Z}} P_Z(z) \mathbb{E}_{P_{\hat{Y}|z}} \left[\log D_z(\hat{Y}) \right] + H(Z)$$

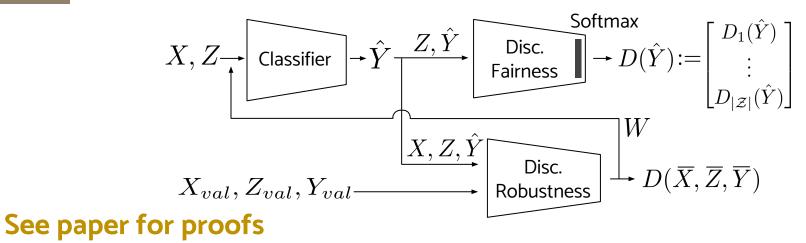
$$I(V;\overline{X},\overline{Z},\overline{Y}) = \max_{D_v(x,z,y):\sum_v D_v(x,z,y)=1, \ \forall (x,z,y)} \sum_{v \in \mathcal{V}} P_V(v) \mathbb{E}_{P_{\overline{X},\overline{Z},\overline{Y}|v}} \left[\log D_v(\overline{X},\overline{Z},\overline{Y}) \right] + H(V)$$



Theorem 1 - Fairness

$$I(Z; \hat{Y}) = \max_{D_z(\hat{y}): \sum_z D_z(\hat{y}) = 1, \ \forall \hat{y}} \sum_{z \in \mathcal{Z}} P_Z(z) \mathbb{E}_{P_{\hat{Y}|z}} \left[\log D_z(\hat{Y}) \right] + H(Z)$$

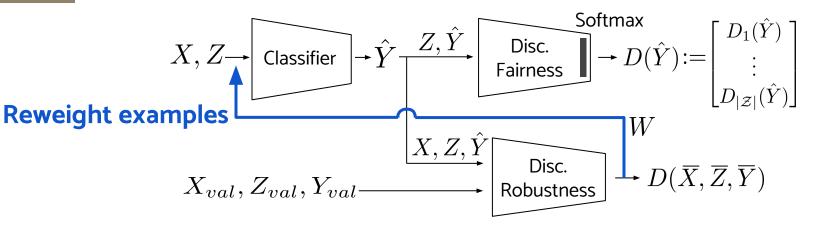
$$I(V; \overline{X}, \overline{Z}, \overline{Y}) = \max_{D_v(x, z, y): \sum_v D_v(x, z, y) = 1, \ \forall (x, z, y)} \sum_{v \in \mathcal{V}} P_V(v) \mathbb{E}_{P_{\overline{X}, \overline{Z}, \overline{Y}|v}} \left[\log D_v(\overline{X}, \overline{Z}, \overline{Y}) \right] + H(V)$$



Theorem 1 - Fairness

$$I(Z; \hat{Y}) = \max_{D_z(\hat{y}): \sum_z D_z(\hat{y}) = 1, \forall \hat{y}} \sum_{z \in \mathcal{Z}} P_Z(z) \mathbb{E}_{P_{\hat{Y}|z}} \left[\log D_z(\hat{Y}) \right] + H(Z)$$

$$I(V; \overline{X}, \overline{Z}, \overline{Y}) = \max_{D_v(x, z, y): \sum_v D_v(x, z, y) = 1, \ \forall (x, z, y)} \sum_{v \in \mathcal{V}} P_V(v) \mathbb{E}_{P_{\overline{X}, \overline{Z}, \overline{Y}|v}} \left[\log D_v(\overline{X}, \overline{Z}, \overline{Y}) \right] + H(V)$$



Theorem 1 - Fairness

$$I(Z; \hat{Y}) = \max_{D_z(\hat{y}): \sum_z D_z(\hat{y})=1, \forall \hat{y}} \sum_{z \in \mathcal{Z}} P_Z(z) \mathbb{E}_{P_{\hat{Y}|z}} \left[\log D_z(\hat{Y}) \right] + H(Z)$$

$$I(V;\overline{X},\overline{Z},\overline{Y}) = \max_{D_v(x,z,y):\sum_v D_v(x,z,y)=1, \ \forall (x,z,y)} \sum_{v \in \mathcal{V}} P_V(v) \mathbb{E}_{P_{\overline{X},\overline{Z},\overline{Y}|v}} \left[\log D_v(\overline{X},\overline{Z},\overline{Y}) \right] + H(V)$$

Motivation

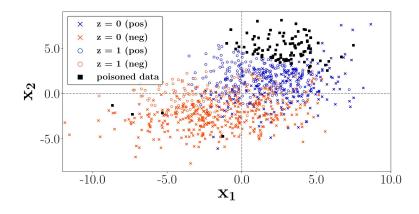
FR-Train

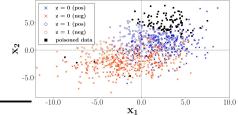
Experiments

Experimental setting

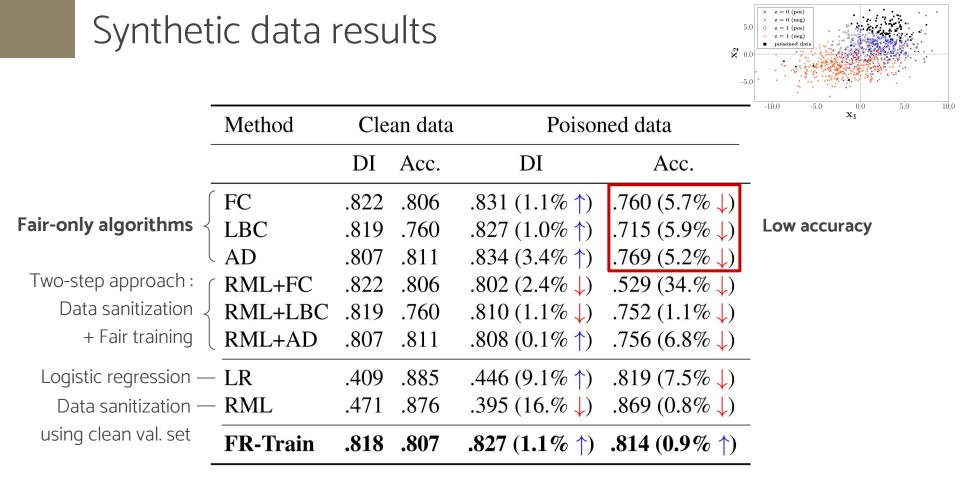
- ° Synthetic data
 - Poisoning (label flipping): 10% of training data
 - Validation set: 10% of training data

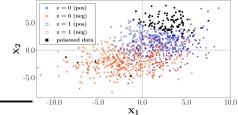
- COMPAS: Predict recidivism in two years for criminals
- AdultCensus: Predict whether annual income > \$50K or not
- Poisoning: 10% of training data
- Validation set: 5% of training data



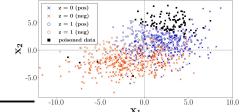


	Method	Clean data		Poisoned data		
		DI	Acc.	DI	Acc.	
	FC	.822	.806	.831 (1.1% †)	.760 (5.7% 🗸)	
Fair-only algorithms {	LBC	.819	.760	.827 (1.0% †)	.715 (5.9% 🜙)	
	AD	.807	.811	.834 (3.4% ↑)	.769 (5.2% 🗸)	
Two-step approach :	RML+FC	.822	.806	.802 (2.4% 🗸)	.529 (34.% 🗸)	
Data sanitization ${}_{<}$	RML+LBC	.819	.760	.810 (1.1% 🗸)	.752 (1.1% 🗸)	
+ Fair training	RML+AD	.807	.811	.808 (0.1% †)	.756 (6.8% 🗸)	
Logistic regression —	- LR	.409	.885	.446 (9.1% †)	.819 (7.5% 🗸)	
Data sanitization — using clean val. set	- RML	.471	.876	.395 (16.% 🗸)	.869 (0.8% \downarrow)	
	FR-Train	.818	.807	.827 (1.1% †)	.814 (0.9% †)	

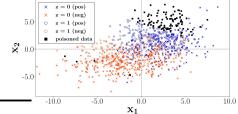




	Method	Clean data		Poisor	-10.0 -5.0 0.0 $\mathbf{x_1}$	
-		DI	Acc.	DI	Acc.	
ſ	FC	.822	.806	.831 (1.1% ↑)	.760 (5.7%)	
Fair-only algorithms {	LBC	.819	.760	.827 (1.0% †)	.715 (5.9% 🗸)	
Ĺ	AD	.807	.811	.834 (3.4% †)	.769 (5.2% \downarrow)	
Two-step approach :	RML+FC	.822	.806	.802 (2.4% 🗸)	.529 (34.% 🗸)	
Data sanitization $\Big<$	RML+LBC	.819	.760	.810 (1.1% 🗸)	.752 (1.1% 🗸)	
+ Fair training	RML+AD	.807	.811	.808 (0.1% †)	.756 (6.8% 🗸)	
Logistic regression —	LR	.409	.885	.446 (9.1% †)	.819 (7.5%)	Low fairness
Data sanitization $-$	RML	.471	.876	.395 (16.% ↓)	.869 (0.8% ↓)	LOW Idiffiess
using clean val. set	FR-Train	.818	.807	.827 (1.1% †)	.814 (0.9% †)	



	Method	Clean data		Poisor	\mathbf{x}_1	
		DI	Acc.	DI	Acc.	
	FC	.822	.806	.831 (1.1% ↑)	.760 (5.7% \downarrow)	
Fair-only algorithms {	LBC	.819	.760	.827 (1.0% †)	.715 (5.9% 🜙)	
	AD	.807	.811	.834 (3.4% †)	.769 (5.2% 🗸)	
Two-step approach :	RML+FC	.822	.806	.802 (2.4% 🗸)	.529 (34.%)	
Data sanitization \downarrow	RML+LBC	.819	.760	.810 (1.1% 🗸)	.752 (1.1% 🗸)	Also low accuracy
+ Fair training	RML+AD	.807	.811	.808 (0.1% †)	.756 (6.8% \downarrow)	
Logistic regression —	LR	.409	.885	.446 (9.1% †)	.819 (7.5% 🗸)	
Data sanitization —	RML	.471	.876	.395 (16.% \downarrow)	.869 (0.8% \downarrow)	
using clean val. set	FR-Train	.818	.807	.827 (1.1% †)	.814 (0.9% †)	



	Method	Cle	an data	Poisoned data		-10.0 -0.0 0.0 0.0 10.0 10.0 \mathbf{X}_1
		DI	Acc.	DI	Acc.	
	FC	.822	.806	.831 (1.1% ↑)	.760 (5.7% 🗸)	-
Fair-only algorithms {	LBC	.819	.760	.827 (1.0% †)	.715 (5.9% 🜙)	
l	AD	.807	.811	.834 (3.4% †)	.769 (5.2% \downarrow)	
Two-step approach :	RML+FC	.822	.806	.802 (2.4% 🗸)	.529 (34.% 🗸)	
Data sanitization 🚽	RML+LBC	.819	.760	.810 (1.1% 🗸)	.752 (1.1% 🗸)	
+ Fair training	RML+AD	.807	.811	.808 (0.1% †)	.756 (6.8% 🗸)	
Logistic regression —	LR	.409	.885	.446 (9.1% ↑)	.819 (7.5% \downarrow)	-
Data sanitization —	RML	.471	.876	.395 (16.% \downarrow)	.869 (0.8% \downarrow)	
using clean val. set	FR-Train	.818	.807	.827 (1.1% †)	.814 (0.9% †)	 Holistic approach = high fairness & accuracy

39

Motivation

FR-Train

Experiments

- Trustworthy AI needs both fair and robust training
- However, addressing fairness and robustness separately is suboptimal
- FR-Train is a **holistic framework for trustworthy AI** performing fair and robust training
 - Mutual information-based interpretation of adversarial learning
 - Novel architecture that enjoys the synergistic effect of fair and robust discriminators
 - Requires a small clean validation set, which can be constructed using crowdsourcing
- Lots of open problems
 - Without clean validation set
 - Other poisoning
 - Algorithm stability

- Trustworthy AI needs both fair and robust training
- However, addressing fairness and robustness separately is suboptimal
- FR-Train is a **holistic framework for trustworthy AI** performing fair and robust training
 - Mutual information-based interpretation of adversarial learning
 - Novel architecture that enjoys the synergistic effect of fair and robust discriminators
 - Requires a small clean validation set, which can be constructed using crowdsourcing
- Lots of open problems
 - Without clean validation set
 - Other poisoning
 - Algorithm stability

