Learning Similarity Metrics for Numerical Simulations

Georg Kohl Kiwon Um Nil

Technical University of Munich

Nils Thuerey

Overview – Motivation

Similarity assessment of scalar 2D simulation data from PDEs

Overview – Motivation

Similarity assessment of scalar 2D simulation data from PDEs

Overview – Motivation

Typical metrics like L^1 or L^2 operate locally \rightarrow structures and patterns are ignored Recognition of spatial contexts with CNNs Mathematical metric properties should be considered

0.1

0.2

Overview – Results

Single example: distance comparison

Plume (a)

Reference

Plume (b)

Distance to Reference

Overview – Results

Single example: distance comparison

Plume (a)

Reference

Plume (b)

Distance to Reference

Combined test data: correlation evaluation

Related Work

"Shallow" vector space metrics

- Metrics induced by L^p-norms, peak signal-to-noise ratio (PSNR)
- Structural similarity index (SSIM) [Wang04]
- Evaluation with user studies for PDE data
 - Liquid simulations [Um17]
 - Non-oscillatory discretization schemes [Um19]

Image-based deep metrics with CNNs

E.g. learned perceptual image patch similarity (LPIPS) [Zhang18]

[Wang04] Wang, Bovik, Sheikh, and Simoncelli. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004 [Um17] Um, Hu, and Thuerey. Perceptual Evaluation of Liquid Simulation Methods. ACM Transactions on Graphics, 2017 [Um19] Um, Hu, Wang, and Thuerey. Spot the Difference: Accuracy of Numerical Simulations via the Human Visual System. CoRR, abs/1907.04179, 2019 [Zhang18] Zhang, Isola, Efros, Shechtman, and Wang. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. CVPR, 2018

Data Generation

Time depended, motion-based PDE with one varied initial condition

$$\begin{bmatrix} p_0 & p_1 & \cdots & p_i \end{bmatrix}$$
 \longrightarrow $t_1 \longrightarrow$ $t_2 \longrightarrow$ \cdots

Initial conditions

Finite difference solver with time discretization

Data Generation

Time depended, motion-based PDE with one varied initial condition

Data Generation

Time depended, motion-based PDE with one varied initial condition Chaotic behavior in controlled environment \rightarrow added noise to adjust data difficulty

Training Data

Eulerian smoke plume

Liquid via FLIP [Zhu05]

Advection-diffusion transport

Burger's equation

[Zhu05] Zhu and Bridson. Animating sand as a fluid. ACM SIGGRAPH, 2005

Test Data

Liquid (background noise)

Advection-diffusion transport (density)

Shape data

Video data

TID2013 [Ponomarenko15]

[Ponomarenko15] Ponomarenko, Jin, Ieremeiev, et al. Image database TID2013: Peculiarities, results and perspectives. Signal Processing-Image Communication, 2015

Method – Base Network

Siamese architecture (shared weights) \rightarrow Convolution + ReLU layers

Feature extraction from both inputs

Existing network possible \rightarrow specialized model works better

Method – Feature Normalization

Adjust value range of feature vectors along channel dimension

- Unit length normalization \rightarrow cosine distance (only angle comparison)
- Element-wise std. normal distribution \rightarrow angle and length in global length distribution

Method – Latent Space Difference

Actual comparison of feature maps \rightarrow element-wise distance Must be a metric w.r.t. the latent space \rightarrow ensure metric properties $|\widetilde{x} - \widetilde{y}|$ or $(\widetilde{x} - \widetilde{y})^2$ are useful options

Method – Aggregations

Compression of difference maps to scalar distance prediction Learned channel aggregation via weighted average Simple aggregations with sum or average

Distance **Spatial** Layer output aggregation: aggregation: -> summation average d d_1 d_3 Layer distances: Result: set of scalars scalar

Loss Function

Ground truth distances c and predicted distances d

$$L(c,d) = \lambda_1(c-d)^2 + \lambda_2 \left(1 - \frac{(c-\overline{c}) \cdot (d-\overline{d})}{\|c-\overline{c}\|_2 \|d-\overline{d}\|} \right)$$

Mean squared error term \rightarrow minimize distance deviation directly Inverted correlation term \rightarrow maximize linear distance relationship

Results

Evaluation with Spearman's rank correlation

Ground truth against predicted distances

Metric	Validation data sets				Test data sets					
	Smo	Liq	Adv	Bur	TID	LiqN	AdvD	Sha	Vid	All
L ²	0.66	0.80	0.74	0.62	0.82	0.73	0.57	0.58	0.79	0.61
SSIM	0.69	0.74	0.77	0.71	0.77	0.26	0.69	0.46	0.75	0.53
LPIPS	0.63	0.68	0.68	0.72	0.86	0.50	0.62	0.84	0.83	0.66
LSiM	0.78	0.82	0.79	0.75	0.86	0.79	0.58	88.0	0.81	0.73

Real-world Evaluation

Johns Hopkins Turbulence Database (JHTDB) [Perlman07]

[Eckert19] Eckert, Um, and Thuerey. Scalarflow: A large-scale volumetric data set of real-world scalar transport flows [...]. ACM Transactions on Graphics, 2019 [Rasp20] Rasp, Dueben, Scher, Weyn, Mouatadid, and Thuerey. Weatherbench: A benchmark dataset for data-driven weather forecasting. CoRR, abs/2002.00469, 2020 [Perlman07] Perlman, Burns, Li, and Meneveau. Data exploration of turbulence simulations using a database cluster. ACM/IEEE Conference on Supercomputing, 2007

Real-world Evaluation

Retrieve order of spatial and temporal frame translations

- Six interval spacings per data repository
- 180-240 sequences each

Mean and standard deviation over correlation of each spacing

Future Work

Accuracy assessment of new simulation methods

Parameter reconstructions of observed behavior

Guiding generative models of physical systems

Extensions to other data

- 3D flows and further PDEs
- Multi-channel turbulence data

Thank you for your attention!

Join the live-sessions for questions and discussion

Source code available at https://github.com/tum-pbs/LSIM

