ICML 2020

# Discount Factor as a Regularizer in RL

#### Ron Amit, Ron Meir (Technion), Kamil Ciosek (MSR)





Microsoft Research, Cambridge UK



### **RL problems objectives**

• The expected  $\gamma_e$ -discounted return (value function)

$$V_{\gamma_e}^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma_e^{t} r_t | s_0 = s, \pi\right] \quad \gamma_e \in (0, 1]$$

Evaluation discount factor

- Policy Evaluation  $\min_{\hat{V}} \|V_{\gamma_e}^{\pi} \hat{V}\|$
- Policy Optimization  $\max_{\pi} V^{\pi}_{\gamma_e}(s)$

#### How can we improve perfomance in the limited data regime?

# **Discount regularization**

• Discount regularization:

 $0 \leq \gamma \leq \gamma_e$  "guidance discount factor" (Jiang '15 )

Algorithm hyperparameter

- Theoretical analysis:
  - Petrik and Scherrer '09 Approx. DP
  - Jiang '15 model based

#### Better performance for limited data

- Regularization effect:
  - $\uparrow$  Bias  $\|V_{\gamma} V_{\gamma_e}\|$
  - $\downarrow$  Variance  $\|\hat{V} V_{\gamma}\|$
- Our work:
  - In TD learning, discount regularization == explicit added regularizer
  - When is discount regularization effective?

# Temporal Difference (TD) Learning

- Policy evaluation with value-function model  $\hat{V}_{ heta}(s)$
- Batch TD(0)

Input: *D* data batch for  $i = 0, 1, ..., N_{iter} - 1$  do Pick at random (s, a, r, s') from *D*  $\theta_{i+1} := \theta_i + \alpha_i \left( r + \gamma \hat{V}_{\theta_i}(s') - \hat{V}_{\theta_i}(s) \right) \nabla \hat{V}_{\theta_i}(s)$ end for

Discount factor hyperparameter

Aim to minimize  $\mathbb{E}_{s \sim \hat{D}} \left( r + \gamma \hat{V}_{\theta}(s') - \hat{V}_{\theta}(s) \right)^2$ 

### Equivalent Form

#### Similar Equivalence

• (expected) SARSA

$$\mathbb{E}_{s\sim\hat{D}}\left[\left(\xi r+\gamma_{e}\hat{V}_{\theta}(s')-\hat{V}_{\theta}(s)\right)^{2}+\left(\lambda\hat{V}_{\theta}(s)\right)^{2}\right]$$

Activation regularization

• LSTD

### The Equivalent Regularizer

- Activation regularization  $\mathbb{E}_{s\sim\hat{D}}(\hat{V}_{\theta}(s))^2$ 
  - $L_2$  regularization  $\|\theta\|^2$
- Tabular case:

$$\hat{V}_{\theta}(s) := \theta_s$$
$$\mathbb{E}_{s \sim \hat{D}} \left( \hat{V}_{\theta}(s) \right)^2 = \sum_{s \in S} \hat{D}(s) \theta_s^2.$$

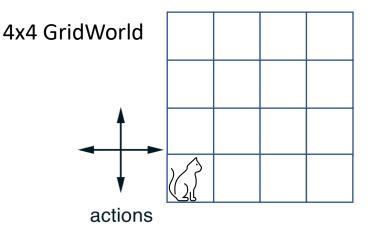
#### Discount regularization is sensitive to the empirical distribution

### **Tabular Experiments**

- Policy evaluation,  $\pi(a|s)$  uniform.
- **Goal**: find  $\hat{V}$  that estimates  $V_{\gamma_e}^{\pi}$  ( $\gamma_e = 0.99$ )
- Loss measures:

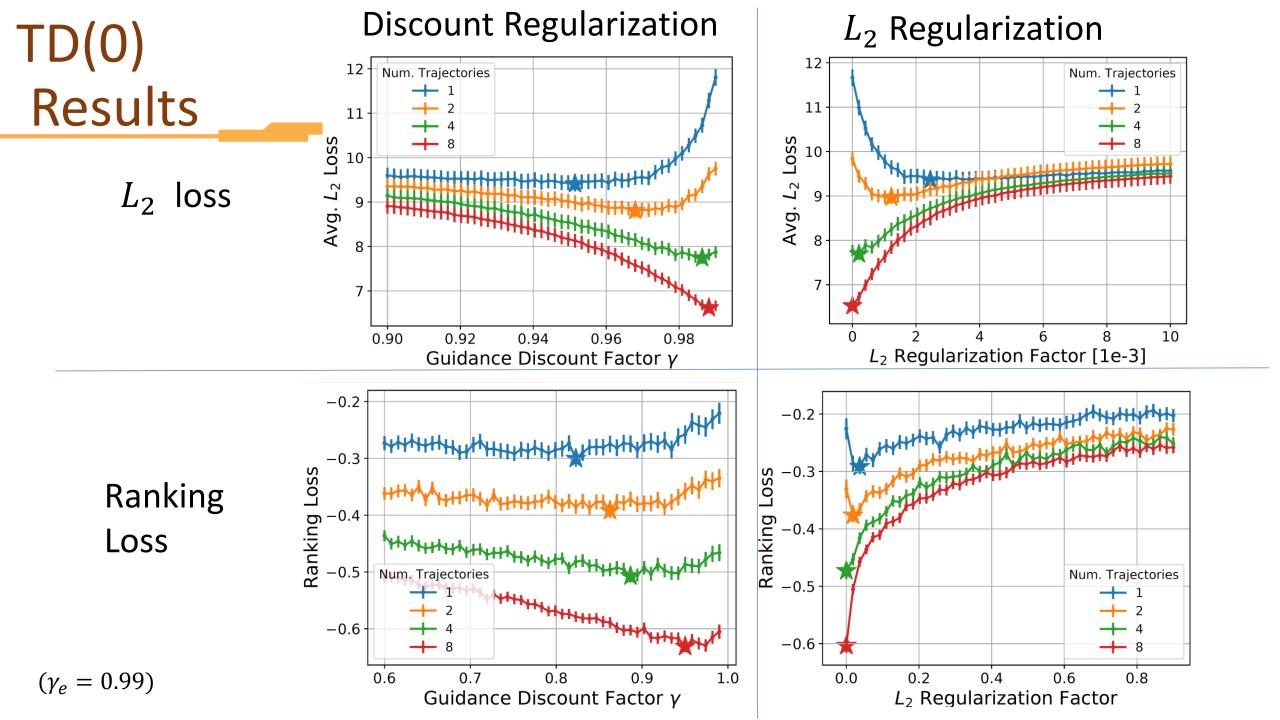
• 
$$L_2$$
 loss:  $\|\hat{V} - V_{\gamma_e}^{\pi}\|_2^2 = \sum_{s \in S} |\hat{V} - V_{\gamma_e}^{\pi}|^2$ 

- **Ranking Loss:** -Kandal`s\_Tau $(\hat{V}, V_{\gamma_e}^{\pi})$ (~ number of order switches between state ranks)
- Average over 1000 MDP instances
- Data: trajectories of 50 time-steps



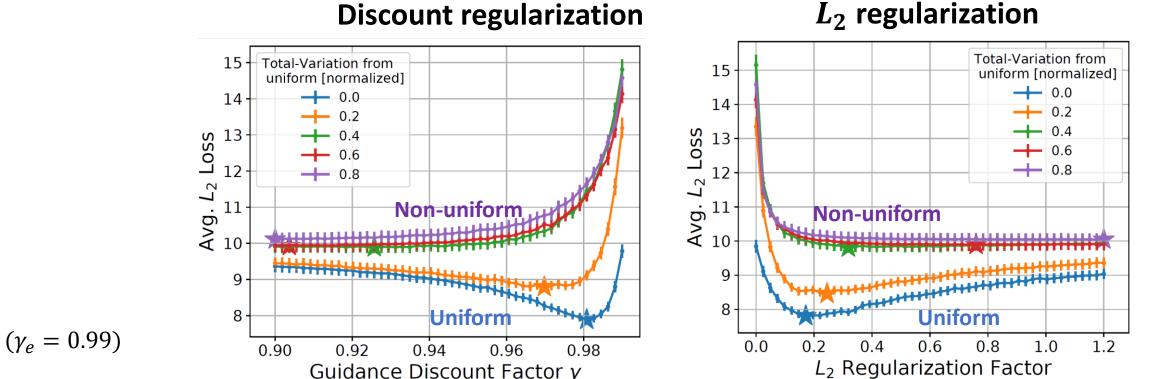
In each MDP Instance:

- Draw  $\mathbb{E}R(s)$
- Draw *P*(.|*s*,*a*)



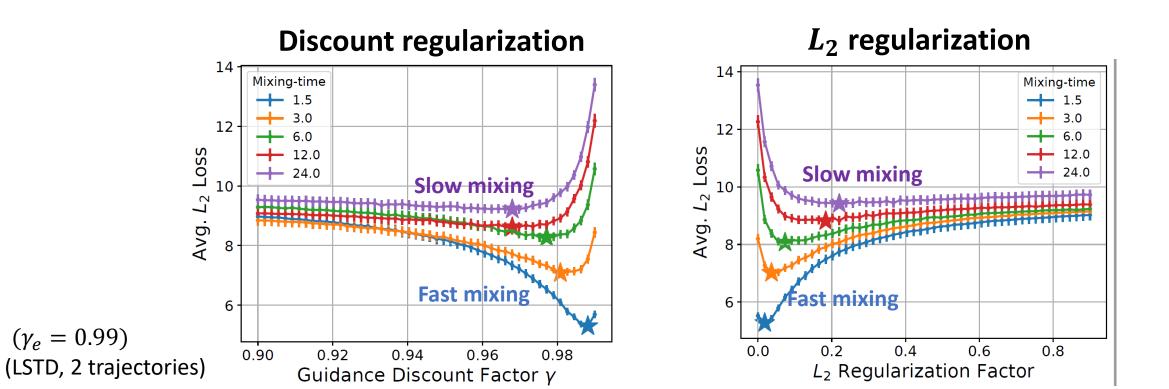
#### Effect of the Empirical Distribution

- Equivalent regularizer:  $\mathbb{E}_{s \sim \hat{D}} \left( \hat{V}_{\theta}(s) \right)^2 = \sum_{s \in S} \hat{D}(s) \theta_s^2$ .
- Tuples (s, s', r) generation:  $s \sim g(s)$ ,  $s' \sim P^{\pi}(s'|s)$ ,  $r \sim R^{\pi}(s)$
- For each MDP draw distribution g(s) at  $d_{TV}$  from uniform



### Effect of the Mixing Time

Lower mixing time (slow mixing) → Higher estimation variance
→ more regularization is needed



### Policy Optimization

**Goal**: 
$$\min_{\pi} \left\| V_{\gamma_e}^{\pi} - V_{\gamma_e}^{\pi^*} \right\|_{1}$$

#### **Policy-iteration:**

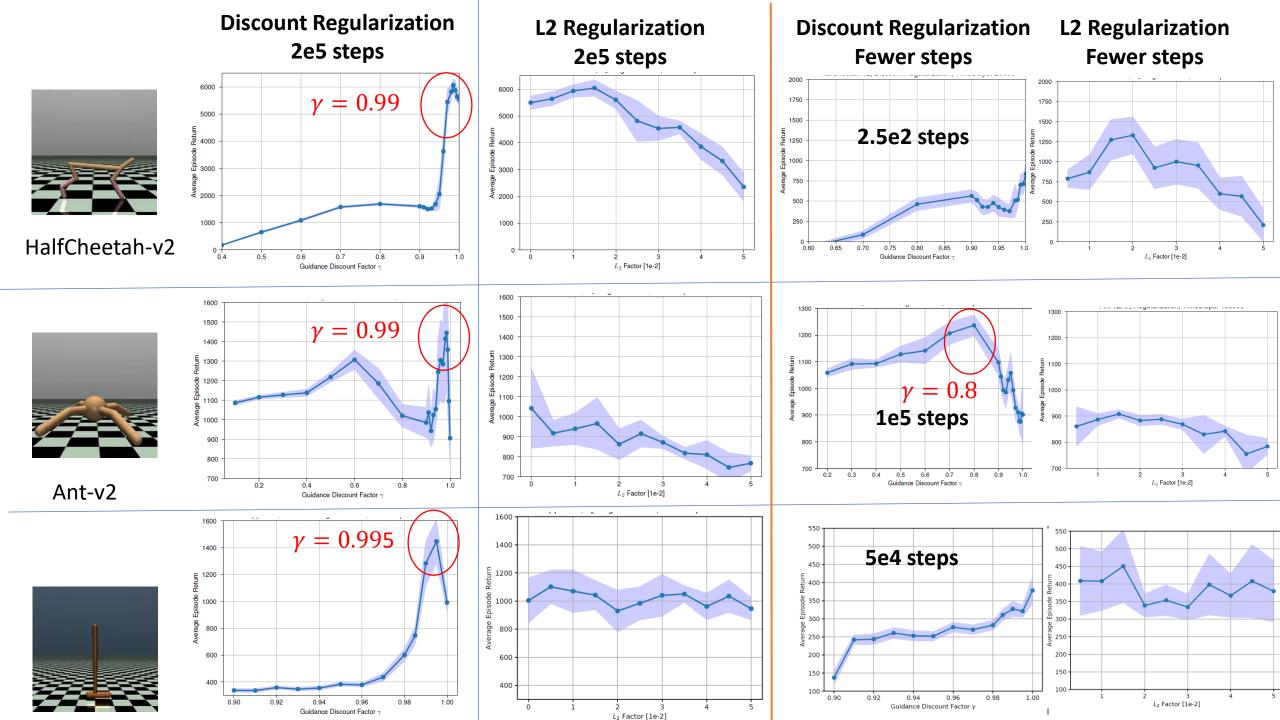
- For episodes:
  - Get data
  - $\hat{Q} \leftarrow \text{Policy evaluation (e.g, SARSA)}$
  - Improvement step (e.g., *ε*-epsilon-greedy)

Activation regularization term:

$$\lambda \mathbb{E}_{(s,a)} \Big( \hat{Q}_{\theta}(s,a) \Big)^2$$

#### **Deep RL Experiments**

- Actor-critic algorithms: DDPG (Lillicrap '15), TD3 (Fujimoto '18)
- Mujoco continuous control (Todorov '12)
- Goal: undiscounted sum of rewards ( $\gamma_e = 1$ )
- Limited number of time-steps (2e5 or less)
- Tested cases:
  - Discount regularization (and no L<sub>2</sub>)
  - $L_2$  regularization (and  $\gamma = 0.999$  )





- Discount regularization in TD is equivalent to adding a regularizer term
- Regularization effectiveness is closely related to the data distribution and mixing rate.
- Generalization in deep RL is strongly affected by regularization
- Future work theory needed

#### Thanks for listening