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Generative Flows

Invertible transformation
x

f1←→ h1
f2←→ h2 · · · fL←→ ε.

Density

log p(x;θ) = log pε(ε) + log

∣∣∣∣ ∂ε∂x
∣∣∣∣ .

Invertible transformation step

Forward f l(hl−1;θ)

Inverse f−1l (hl;θ)

Jacobian
∣∣∣ ∂f l
∂hl−1

∣∣∣
Tractable Jacobian (affine coupling layer)

Free-form (FFJORD, residual flows)
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Bottleneck Problem

x
f1←→ h1

f2←→ h2 · · · fL←→ ε.
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Abstract
Generative flows are promising tractable models
for density modeling that define probabilistic dis-
tributions with invertible transformations. How-
ever, tractability imposes architectural constraints
on generative flows, making them less expres-
sive than other types of generative models. In this
work, we study a previously overlooked constraint
that all the intermediate representations must have
the same dimensionality with the original data due
to invertibility, limiting the width of the network.
We tackle this constraint by augmenting the data
with some extra dimensions and jointly learning
a generative flow for augmented data as well as
the distribution of augmented dimensions under
a variational inference framework. Our approach,
VFlow, is a generalization of generative flows and
therefore always performs better. Combining with
existing generative flows, VFlow achieves a new
state-of-the-art 2.98 bits per dimension on the
CIFAR-10 dataset and is more compact than pre-
vious models to reach similar modeling quality.

1. Introduction
Generative flows (Dinh et al., 2014; 2017; Kingma & Dhari-
wal, 2018; Ho et al., 2019) are a promising class of gener-
ative models. They define a probability distribution p(x)
by applying an invertible transformation x = f−1(ε) to
some simple and known distribution p(ε). Stacking a se-
quence f1 . . . , fL of deep neural networks as the trans-
formation, generative flows can model complicated high-
dimensional data. Comparing with generative adversarial
networks (GANs) (Goodfellow et al., 2014) and variational
autoencoders (VAEs) (Kingma & Welling, 2014), genera-
tive flows are particularly attractive because their sampling
process and density estimation are tractable. Due to these
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Figure 1. (a) Bottleneck problem in a Flow++ (Ho et al., 2019)
for CIFAR-10. Dimensionality of the transformed data (red) lim-
its the model capacity. (b) Our solution VFlow, where DZ is
the dimensionality of the augmented random variable. Only the
transformation step f1 is shown due to space constraint.
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VFlow

(x, z)
f1←→ h1

f2←→ h2 · · · fL←→ ε.
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Figure 1. (a) Bottleneck problem in a Flow++ (Ho et al., 2019)
for CIFAR-10. Dimensionality of the transformed data (red) lim-
its the model capacity. (b) Our solution VFlow, where DZ is
the dimensionality of the augmented random variable. Only the
transformation step f1 is shown due to space constraint.

Little computational and parameter overhead
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Estimation

Let p̂(x) be the empirical data distribution, and

pX(x;θX) be the density of a vanilla flow,

pXZ(x, z;θXZ) be the density of an augmented flow, and

pXZ(x;θXZ) =
∫
z pXZ(x, z;θXZ)dz be the marginal distribution

Evidence lower bound (ELBO) log pXZ(x;θXZ) ≥ Eq(z|x;φ)[log p(x, z;θXZ)− log q(z|x;φ)];
q(z|x;φ) can be implemented with another conditional flow.

Maximum likelihood estimation for Flow

max
θX

Ep̂(x)[log p(x;θX)]

Maximum ELBO estimation for VFlow

max
θXZ ,φ

Ep̂(x)q(z|x;φ)[log p(x, z;θXZ)− log q(z|x;φ)],

where p̂(x)q(z|x;φ) is the augmented data distribution.
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Theoretical Guarantee

Theorem

max
θX

Ep̂(x)[log p(x;θX)]︸ ︷︷ ︸
MLE of a Flow

≤ max
θXZ ,φ

Ep̂(x)q(z|x;φ)[log p(x, z;θXZ)− log q(z|x;φ)]︸ ︷︷ ︸
Max ELBO estimation of a VFlow

.

For any flow log p(x;θX)

Construct a special VFlow log p(x, z;θXZ) = log p(x;θX) + log pε(z);

and a special variational distribution log q(z|x;φ) = log pε(z);

The variational bound log p(x, z;θXZ)− log q(z|x;φ) = log p(x;θX).
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Toy Data

(a) Data (-3.47)
(b) 3-step, 10-dim VFlow

(-3.51)

(c) 3-step Glow (-3.66) (d) 20-step Glow (-3.52)
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Visualization of Flow and VFlow
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VFlow: More Expressive Generative Flows with Variational Data Augmentation

Model density (-3.80) x h1 ε

Model density (-3.69) x (top view) x (front view) ε

f1 f2

f1

Figure 3. Visualization of learnt transformation on toy data. Top row: 2-step Glow. Bottom row: 2-step, 3-dimensional VFlow. Log-
likelihood is shown in parenthesis. We sample ε and visualize the transformed density in x, h1 and ε space. The density is estimated from
samples by kernel density estimation, and we show the 50% probability contour / isosurface for each mode in different color.
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Figure 4. Impact of the dimensionality on the toy dataset.

5 times with different random seeds. Model quality is mea-
sured with the log-likelihood log p(x) on a 1,000-sample
test set. For VFlow, likelihood is evaluated with 100-sample
importance sampling by Eq. (5).

We study the impact of the dimensionality of the flow
DX + DZ ∈ {2, 4, 6, 8, 10}, where DX + DZ = 2 is
the baseline Glow and DX +DZ > 2 is VFlow. To control
the model size, we vary the total number of transforma-

tion steps L ∈ {2, 3, 4, 5, 10, 15, 20}. For baseline Glow,
the p-network has all the Lp = L transformation steps;
and for VFlow, p-network has Lp = L− 1 transformation
steps and q-network has one transformation step. The re-
sult is shown in Fig. 4, VFlow significantly outperforms
Glow under similar model size. For example, a 3-step, 10-
dimensional VFlow achieves −3.51± 0.01 log-likelihood
(Fig. 2(b)), outperforming the baseline 3-step Glow with
−3.67± 0.03 log-likelihood (Fig. 2(c)) by a large margin.
The 3-layer, 10-dimensional VFlow even outperforms a
much larger 20-step Glow, which achieves −3.54 ± 0.05
log-likelihood (Fig. 2(d)), showing that the model can be
much more compact by solving the bottleneck problem.

To further understand why the dimensionality of is impor-
tant, we visualize the learnt representation for a 2-step Glow
and a 2-step VFlow, which has a single transformation step
for both p and q. To make visualization possible, z is only
one-dimensional, so DX +DZ = 3. Note that having odd
number of dimensions is suboptimal because the affine cou-
pling layer cannot split the data into two parts with equal
number of dimensions. Moreover, affine coupling layer
cannot represent the one-dimensional distribution q(z|x),
so we replace it with a Gaussian layer N (z;µ(x),σ(x))
without changing the architecture of µ(x) and σ(x). The
learnt transformations are visualized in Fig. 3. While Glow
struggles to map different modes to the compact space of
ε, VFlow does a much better job. VFlow learns a pile of
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Image Density Modeling on CIFAR10

Model bpd

Glow 3.35
FFJORD 3.40
Residual Flow 3.28
MintNet 3.32
Flow++ 3.08
VFlow 2.98

Model bpd Parameters Hidden channels Steps

3-channel Flow++ 3.08 31.4M 96 10
6-channel VFlow 2.98 37.8M 96 10
6-channel VFlow 3.03 16.5M 64 10
6-channel VFlow 3.08 11.9M 56 10
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Conclusion

VFlow

tackles the bottleneck problem of generative flows;

can be easily combined with existing flows;

fits in a variational data augmentation framework;

is theoretically superior than vanilla flows;

achieves state-of-the-art result for image density modeling.
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