RUHR UNIVERSITÄT BOCHUM

Leveraging Frequency Analysis for Deep Fake Image Recognition

Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa, Thorsten Holz

METHODS	LEARN	PRESS	CONTACT	BOOK	CALLING BS

Click on the person who is real.

 $D_{k_x,k_y} = \sum_{x=0}^{N_1 - 1} \sum_{y=0}^{N_2 - 1} I_{x,y} \cos\left[\frac{\pi}{N_1}\left(x + \frac{1}{2}\right)k_x\right] \cos\left[\frac{\pi}{N_2}\left(y + \frac{1}{2}\right)k_y\right].$

 $D_{k_x,k_y} = \sum_{x=0}^{N_1-1} \sum_{y=0}^{N_2-1} I_{x,y} \cos\left[\frac{\pi}{N_1}\left(x+\frac{1}{2}\right)k_x\right] \cos\left[\frac{\pi}{N_2}\left(y+\frac{1}{2}\right)k_y\right].$

 $D_{k_x,k_y} = \sum_{x=0}^{N_1 - 1} \sum_{y=0}^{N_2 - 1} I_{x,y} \cos\left[\frac{\pi}{N_1}\left(x + \frac{1}{2}\right)k_x\right] \cos\left[\frac{\pi}{N_2}\left(y + \frac{1}{2}\right)k_y\right].$

BigGAN

Stanford Dogs

ProGAN

SN-DCGAN

StyleGAN

Stanford Dogs

BigGAN

LSUN Bedrooms

Nearest Neighbour

ProGAN

SN-DCGAN

StyleGAN

Binomial

Domain

Image

Frequency

Accuracy

75.78%

100.00%

• Experiments on corrupted data

Accuracy

75.78%

100.00%

- Experiments on corrupted data
 - Blurring, cropping, jpeg compression, noise, combination

Accuracy 75.78% 100.00%

- Experiments on corrupted data
 - Blurring, cropping, jpeg compression, noise, combination

Accuracy	
75.78%	
100.00%	

Frequency representation performs better (bar one exception)

- Experiments on corrupted data
 - Blurring, cropping, jpeg compression, noise, combination

 - recovers higher accuracy

Accuracy	
75.78%	
100.00%	

• Frequency representation performs better (bar one exception) • When trained on corrupted data, frequency representation

 $D_{k_x,k_y} = \sum_{x=0}^{N_1-1} \sum_{y=0}^{N_2-1} I_{x,y} \cos\left[\frac{\pi}{N_1}\left(x+\frac{1}{2}\right)k_x\right] \cos\left[\frac{\pi}{N_2}\left(y+\frac{1}{2}\right)k_y\right].$

Discrete Cosine Transform

 $D_{k_x,k_y} = \sum_{x=0}^{N_1-1} \sum_{y=0}^{N_2-1} I_{x,y} \cos\left[\frac{\pi}{N_1}\left(x+\frac{1}{2}\right)k_x\right] \cos\left[\frac{\pi}{N_2}\left(y+\frac{1}{2}\right)k_y\right].$

$$\frac{1}{n}\left(x+\frac{1}{2}\right)k_x\right]\cos\left[\frac{\pi}{N_2}\left(y+\frac{1}{2}\right)k_y\right]$$

in y direction

 $D_{k_x,k_y} = \sum_{x=0}^{N_1-1} \sum_{y=0}^{N_2-1} I_{x,y} \cos\left[\frac{\pi}{N_1}\left(x+\frac{1}{2}\right)k_x\right] \cos\left[\frac{\pi}{N_2}\left(y+\frac{1}{2}\right)k_y\right].$

Frequencies in x direction —

Stanford dogs

SN-DCGAN

StyleGAN

Specific to GANs?

Cascaded Refinement Networks

Implicit Maximum Likelihood Estimation

Wang, et al., "CNN-generated images are surprisingly easy to spot... for now", CVPR 2020

• • •

• • •

1024x1024

Odena, et al., "Deconvolution and Checkerboard Artifacts", Distill 2016

Strided Transposed Convolution → Upsampling + Convolution

1024x1024

Odena, et al., "Deconvolution and Checkerboard Artifacts", Distill 2016

Durall, et al., "Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions", CVPR 2020

Odena, et al., "Deconvolution and Checkerboard Artifacts", Distill 2016

Strided Transposed Convolution → Upsampling + Convolution

Domain

Image

Frequency

RUHR UNIVERSITÄT BOCHUM

Accuracy

75.78%

100.00%

Frequency domain enables linear separability

Nearest Neighbour

Bilinear

- Frequency domain enables linear separability
- Still artifacts for more elaborate upsampling techniques

- Frequency domain enables linear separability
- Still artifacts for more elaborate upsampling techniques
- For existing source attribution tasks, we can reduce the error rate

by up to 75%

- Frequency domain enables linear separability
- Still artifacts for more elaborate upsampling techniques
- For existing source attribution tasks, we can reduce the error rate
 - by up to 75%
- Neural network training is easier and needs less training data

- Frequency domain enables linear separability
- Still artifacts for more elaborate upsampling techniques
- For existing source attribution tasks, we can reduce the error rate
 - by up to 75%
- Neural network training is easier and needs less training data
- Experiments on corrupted data

RUHR UNIVERSITÄT BOCHUM

RUB

