Principled Learning Method for Wasserstein Distributionally Robust Optimization with Local Perturbations

> Yongchan Kwon ¹ Wonyoung Kim ² Joong-Ho Won ² Myunghee Cho Paik ²

¹Department of Biomedical Data Science, Stanford University

²Department of Statistics, Seoul National University

Contact: yckwon@stanford.edu

Motivation: state-of-the-art models are not robust

CIFAR-10: 94.1 % \rightarrow ?? % CIFAR-100: 74.4 % \rightarrow ?? %

Motivation: state-of-the-art models are not robust

CIFAR-10: 94.1% \rightarrow 73.0 % (21.1 % drop) CIFAR-100: 74.4% \rightarrow 31.6 % (42.8 % drop)

ICML 2020

- In this paper, we study Wasserstein distributionally robust optimization (WDRO) to make models robust.
- We develop a **principled and tractable** statistical inference method for WDRO.
- We formally present a locally perturbed data distribution and provide WDRO inference when data are locally perturbed.

Statistical learning problems

 Many statistical learning problems can be expressed by an optimization problem as follows:

$$\inf_{h\in\mathcal{H}} R(\mathbb{P}_{\text{data}}, h) := \inf_{h\in\mathcal{H}} \int_{\mathcal{Z}} h(\zeta) d\mathbb{P}_{\text{data}}(\zeta).$$

• Given observations $z_1, \ldots, z_n \sim \mathbb{P}_{data}$ and the empirical distribution $\mathbb{P}_n := n^{-1} \sum_{i=1}^n \delta_{z_i}$, the empirical risk minimization (ERM) can be represented as

$$\inf_{h\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}h(z_i).$$
(1)

• A solution of (1) asymptotically minimizes the true risk, but it performs poorly when the test data distribution is different from \mathbb{P}_{data} .

Wasserstein distributionally robust optimization (WDRO)

• WDRO is the problem of learning a model minimizes the worst-case risk over the Wasserstein ball:

$$\inf_{h \in \mathcal{H}} \underbrace{\sup_{\mathbb{Q} \in \mathfrak{M}_{\alpha_n, p}(\mathbb{P}_n)} R(\mathbb{Q}, h)}_{\text{worst-case risk}},$$

where $\mathfrak{M}_{\alpha_n,p}(\mathbb{P}_n)$ is the Wasserstein ball, a set of probability measures whose *p*-Wasserstein metric from \mathbb{P}_n is less than $\alpha_n > 0$.

Figure: Illustration of Wasserstein ball $\mathfrak{M}_{\alpha_n,p}(\mathbb{P}_n)$.

 \triangleright By the design of the local worst-case risk, a solution to WDRO can avoid overfitting to \mathbb{P}_n and learn a robust model.

WDRO is a powerful framework to train robust models! However, there are challenges.

- Exact computation of the worst-case risk is intractable except for few simple settings.
 - it is difficult to find the inner supremum of the risk over the Wasserstein ball whose cardinality is infinity.
- Even though we solve WDRO, we do not know any theoretical properties of a solution (e.g. risk consistency).

 \rightarrow We solve these two problems in this paper!

Asymptotic equivalence between WDRO and penalty-based methods

Let $R_{\alpha_n,p}^{\text{worst}}(\mathbb{P}_n, h) := \sup_{\mathbb{Q} \in \mathfrak{M}_{\alpha_n,p}(\mathbb{P}_n)} R(\mathbb{Q}, h)$ and (α_n) be a vanishing sequence. In the following, we show that the worst-case risk can be approximated.

Theorem 1 (Informal; Approximation to local worst-case risk)

Let \mathcal{Z} be an open and bounded subset of \mathbb{R}^d . For $k \in (0, 1]$, assume that a gradient of loss $\nabla_z h(z)$ is k-Hölder continuous and $\mathbb{E}_{data}(\|\nabla_z h\|_*)$ is bounded below by some constant. Then for $p \in (1 + k, \infty)$, the following holds.

$$\left|R(\mathbb{P}_n,h)+\alpha_n\|\nabla_z h\|_{\mathbb{P}_n,p^*}-R^{\mathrm{worst}}_{\alpha_n,p}(\mathbb{P}_n,h)\right|=O_p(\alpha_n^{1+k}).$$

Gao et al. (2017, Theorem 2) obtained a similar result when $\mathcal{Z} = \mathbb{R}^d$, yet our boundedness assumption on \mathcal{Z} is reasonable in a sense that real computers store data in a finite number of states. Also, Theorem 1 is sharper.

Vanishing excess worst-case risk

Based on Theorem 1, for a vanishing sequence (α_n) , we propose to minimize the following surrogate objective:

$$R_{\alpha_n,p}^{\text{prop}}(\mathbb{P}_n,h) := R(\mathbb{P}_n,h) + \alpha_n \|\nabla_z h\|_{\mathbb{P}_n,p^*}.$$
(2)

Let $\hat{h}_{\alpha_n,p}^{\text{prop}} = \operatorname{argmin}_{h \in \mathcal{H}} R_{\alpha_n,p}^{\text{prop}}(\mathbb{P}_n, h).$

Theorem 2 (Informal; Excess worst-case risk bound)

With the assumptions in Theorem 1, suppose \mathcal{H} is uniformly bounded. Then, for $p \in (1 + k, \infty)$, the following holds.

$$R_{\alpha_n,p}^{\text{worst}}(\mathbb{P}_{\text{data}}, \hat{h}_{\alpha_n,p}^{\text{prop}}) - \inf_{h \in \mathcal{H}} R_{\alpha_n,p}^{\text{worst}}(\mathbb{P}_{\text{data}}, h) = O_p\left(\frac{\mathfrak{C}(\mathcal{H}) \vee \alpha_n^{1-p}}{\sqrt{n}} \vee \log(n)\alpha_n^{1+k}\right),$$

where $\mathfrak{C}(\mathcal{H})$ is the Dudley's entropy integral.

Compared to Lee and Raginsky (2018), this form has the additional term $\log(n)\alpha_n^{1+k}$, which can be thought as a payoff for the approximation.

ICML 2020

WDRO inference

WDRO with locally perturbed data

Definition 3 (Locally perturbed data distribution)

For a dataset $Z_n = \{z_1, \ldots, z_n\}$ and $\beta \ge 0$, we say \mathbb{P}'_n is a β -locally perturbed data distribution if there exists a set $\{z'_1, \ldots, z'_n\}$ such that $\mathbb{P}'_n = \frac{1}{n} \sum_{i=1}^n \delta_{z'_i}$ and z'_i can be expressed as

$$z_i'=z_i+e_i,$$

for $||e_i|| \leq \beta$ and $i \in [n]$.

▷ Examples include denoising autoencoder (Vincent et al., 2010), Mixup (Zhang et al., 2017), and adversarial training (Goodfellow et al., 2014).

Extends the previous results

Theorem 4 (Informal; Parallel to Theorem 1)

Let (β_n) be a vanishing sequence and \mathbb{P}'_n be a β_n -locally perturbed data distribution. With the assumptions in Theorem 1 and for $p \in (1 + k, \infty)$, the following holds.

$$\left| R(\mathbb{P}'_n,h) + \alpha_n \| \nabla_z h \|_{\mathbb{P}'_n,p^*} - R^{\mathrm{worst}}_{\alpha_n,p}(\mathbb{P}_n,h) \right| = O_p(\alpha_n^{1+k} \vee \beta_n).$$

- Theorem 4 extends Theorem 1 to the cases when data are locally perturbed. The cost of perturbation is an additional error $O(\beta_n)$, which is negligible when $\beta_n \leq O(\alpha_n^{1+k})$.
- A similar extension for Theorem 2 is provided in the paper.

Numerical Experiments

- We conduct numerical experiments to demonstrate robustness of the proposed method using image classification datasets.
- We compare the following four methods:
 - Empirical risk minimization (ERM)
 - Proposed method (WDRO)
 - Empirical risk minimization with the Mixup (MIXUP)
 - Proposed method with the Mixup (WDRO+MIX)
- We use CIFAR-10 and CIFAR-100 datasets and train models using clean images.

Numerical Experiments: Accuracy comparison

Table: Accuracy comparison of the four methods using the clean and noisy test datasets with various training sample sizes. Average and standard deviation are denoted by 'average±standard deviation'.

SAMPLE	Clean				1% salt and pepper noise			
SIZE	ERM	WDRO	MIXUP	WDRO+MIX	ERM	WDRO	MIXUP	WDRO+MIX
CIFAR-10								
2500	$\textbf{77.3} \pm \textbf{0.8}$	77.1 ± 0.7	$\textbf{81.4} \pm \textbf{0.5}$	80.8 ± 0.7	69.8 ± 1.8	71.9 ± 0.9	72.7 ± 1.6	74.8 ± 0.9
5000	83.3 ± 0.4	83.0 ± 0.3	$\textbf{86.7} \pm \textbf{0.2}$	$\textbf{85.6} \pm \textbf{0.3}$	75.2 ± 1.4	77.4 ± 0.5	$\textbf{76.4} \pm \textbf{1.7}$	$\textbf{79.6} \pm \textbf{0.9}$
25000	92.2 ± 0.2	91.4 ± 0.1	$\textbf{93.3} \pm \textbf{0.1}$	92.4 ± 0.1	83.3 ± 0.8	$\textbf{85.8} \pm \textbf{0.5}$	82.1 ± 1.7	$\textbf{86.2} \pm \textbf{0.3}$
50000	94.1 ± 0.1	93.1 ± 0.1	$\textbf{94.8} \pm \textbf{0.2}$	93.5 ± 0.2	84.1 ± 1.0	$\textbf{87.4} \pm \textbf{0.5}$	82.5 ± 1.3	$\textbf{87.3} \pm \textbf{0.5}$
CIFAR-100								
2500	$\textbf{33.8} \pm \textbf{1.0}$	34.6 ± 1.7	$\textbf{38.9} \pm \textbf{0.6}$	$\textbf{39.4} \pm \textbf{0.2}$	29.2 ± 0.2	$\textbf{30.4} \pm \textbf{1.2}$	$\textbf{33.2} \pm \textbf{1.1}$	$\textbf{35.0} \pm \textbf{0.5}$
5000	45.2 ± 0.9	43.7 ± 0.7	$\textbf{49.9} \pm \textbf{0.2}$	$\textbf{49.5} \pm \textbf{0.4}$	$\textbf{37.0} \pm \textbf{0.8}$	$\textbf{38.1} \pm \textbf{1.1}$	$\textbf{39.4} \pm \textbf{1.3}$	$\textbf{42.3} \pm \textbf{0.7}$
25000	67.8 ± 0.2	66.6 ± 0.3	$\textbf{69.3} \pm \textbf{0.3}$	68.2 ± 0.3	51.0 ± 1.9	$\textbf{56.5} \pm \textbf{0.8}$	49.6 ± 1.0	$\textbf{55.8} \pm \textbf{0.4}$
50000	74.4 ± 0.2	73.5 ± 0.3	$\textbf{75.2} \pm \textbf{0.2}$	73.8 ± 0.3	51.9 ± 1.3	$\textbf{62.1} \pm \textbf{0.5}$	50.0 ± 3.0	60.6 ± 0.7

 \triangleright In most cases, the proposed methods (WDRO, WDRO+MIX) show significantly better performance when test data are noisy.

Numerical Experiments: Accuracy comparison by noise intensity

Table: The comparison of the accuracy reduction on various salt and pepper noise intensities.

Probability of Noisy pixels	ERM	WDRO	MIXUP	WDRO+MIX
CIFAR-10 1% 2% 4%	$\begin{array}{c} 10.1 \pm 0.9 \\ 21.1 \pm 1.9 \\ 39.7 \pm 2.9 \end{array}$	$\begin{array}{c} 5.7 \pm 0.4 \\ 13.2 \pm 0.5 \\ 32.9 \pm 2.5 \end{array}$	$\begin{array}{c} 12.4 \pm 1.2 \\ 24.3 \pm 1.4 \\ 43.5 \pm 1.8 \end{array}$	$\begin{array}{c} 6.2 \pm 0.4 \\ 12.7 \pm 0.8 \\ 30.9 \pm 2.0 \end{array}$
CIFAR-100 1% 2% 4%	$\begin{array}{c} 22.5 \pm 1.3 \\ 42.8 \pm 2.3 \\ 61.7 \pm 1.4 \end{array}$	$\begin{array}{c} 11.4 \pm 0.4 \\ 26.5 \pm 1.0 \\ 50.0 \pm 0.9 \end{array}$	25.2 ± 2.5 45.9 ± 3.4 63.9 ± 2.0	$\begin{array}{c} 13.2\pm0.7\\ 29.7\pm0.7\\ 53.5\pm0.9\end{array}$

Numerical Experiments: Gradient norm

Figure: The box plots of the ℓ_∞ -norm of the gradients when the number of images used in training increases from 10×2^{16} to 100×2^{16} .

Conclusion

- We develop a **principled and tractable** statistical inference method for WDRO.
- We formally present a locally perturbed data distribution and develop WDRO inference when data are locally perturbed.
- For more details, ArXiv & Github links: https://arxiv.org/abs/2006.03333 https://github.com/ykwon0407/wdro_local_perturbation

References I

- Gao, R., Chen, X., and Kleywegt, A. J. (2017). Wasserstein distributional robustness and regularization in statistical learning. *arXiv preprint arXiv:1712.06050*.
- Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.
- Lee, J. and Raginsky, M. (2018). Minimax statistical learning with Wasserstein distances. In Advances in Neural Information Processing Systems, pages 2687–2696.
- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *Journal of machine learning research*, 11(Dec):3371–3408.
- Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization. *arXiv preprint arXiv:1710.09412*.