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Contributions of this paper:

● Uncover the primary contribution of entropy in maximum 
entropy RL for MuJoCo

● A streamlined algorithm (SOP), without entropy maximization, 
matching the sampling efficiency and robust performance of 
SAC.

● A simple non-uniform sampling scheme to reach SOTA 
performance
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Squashing Exploration Problem
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Squashing Exploration Problem
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How Entropy Maximization Helps

 (Haarnoja et al., 2018b)





Inverting Gradients

Policy
θ a amin amax

If ▽a suggests increasing a : ▽a = ▽a •  —————— 
amax - a 

amax - amin

            Otherwise         : ▽a = ▽a •  —————— 
amax - amin

a - amin 

(Hausknecht & Stone, 2015)

 ▽a is the gradient of the policy loss w.r.t to a.



We can do something even SIMPLER



Output Normalization
Replace entropy maximization → Streamlined Off-Policy (SOP)

S Policy Normalization μ’(s)…….

μ1(s)

μK(s)

μ(s) = (μ1(s), μ2(s), …, μK(s)) ;

G = || μ(s) ||1 / K 

If G > 1, μ’k(s)  ⇽ μk(s) / G; for all k = 1, . . . , K

 



DDPG TD3 SAC SOP

Target Q Network ✓ ✓ ✓ ✓

Target Policy 
Network ✓ ✓

Double 
Q-Learning ✓ ✓ ✓

Target Policy 
Smoothing ✓ ✓ ✓

Delayed Policy 
Update ✓

Entropy 
Maximization ✓

Normalization ✓
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d1
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Empty Buffer

d1 d2 d3 ……. …….dt

Uniform Sampling:  expected number of times being sampled E(dt) = ∑ k = t….T
 1/k

…….

dT



Emphasizing Recent Experience (ERE)
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Conclusion
Showed that the primary role of maximum entropy RL for the MuJoCo benchmark 
is to maintain satisfactory exploration in the presence of bounded action spaces. 

A new streamlined algorithm which does not employ entropy maximization but 
nevertheless matches the sampling efficiency and robust performance of SAC for 
the MuJoCo benchmarks. 

Combined our streamlined algorithm with a simple non-uniform sampling scheme 
to create a simple algorithm that achieves state-of-the art performance for the 
MuJoCo benchmark.



Thank you so much for listening!


