Striving for simplicity and performance in off-policy DRL: Output Normalization and Non-Uniform Sampling

Che Wang^{*1}, Yanqiu Wu^{*1}, Quan Vuong², Keith Ross¹ *Equal Contribution, ¹New York University, ²University of California San Diego

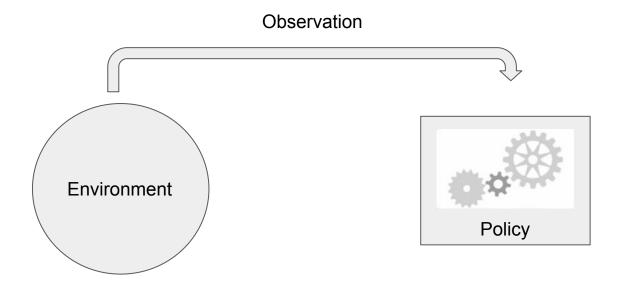
Outline

- Summary of contributions
- Preliminaries
- Entropy maximization
- Squashing exploration problem
- Output normalization and Streamlined Off-Policy (SOP)
- Non-uniform sampling
- Conclusions

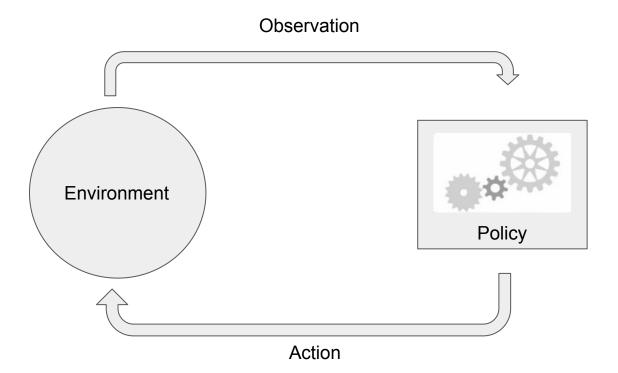
Contributions of this paper:

- Uncover the primary contribution of entropy in maximum entropy RL for MuJoCo
- A streamlined algorithm (SOP), without entropy maximization, matching the sampling efficiency and robust performance of SAC.
- A simple non-uniform sampling scheme to reach SOTA performance

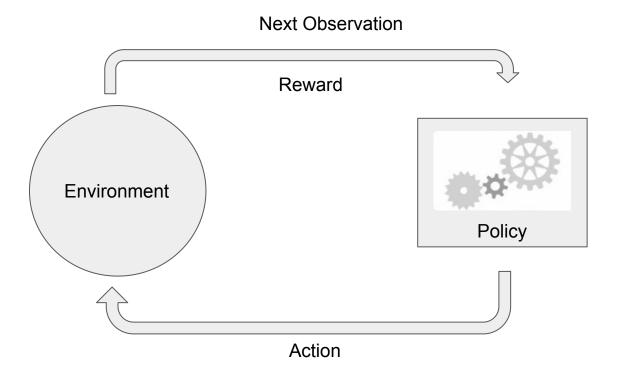
Reinforcement Learning



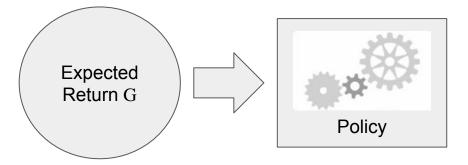
Reinforcement Learning



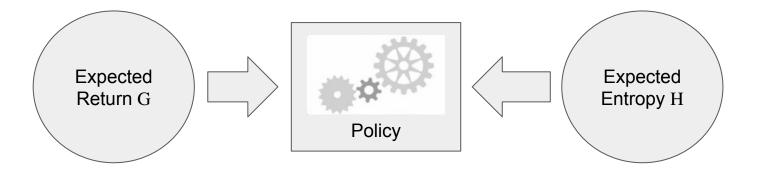
Reinforcement Learning



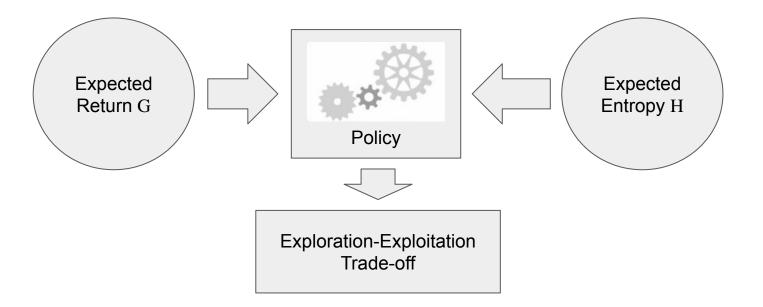
Why Entropy Maximization

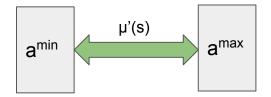


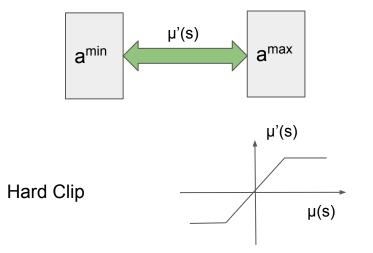
Why Entropy Maximization

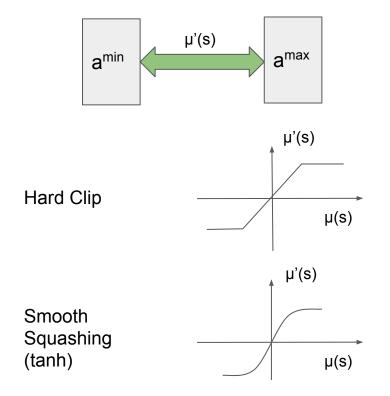


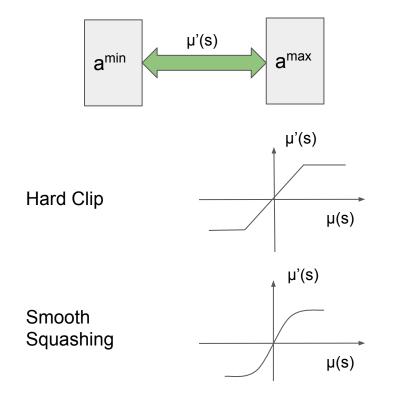
Why Entropy Maximization





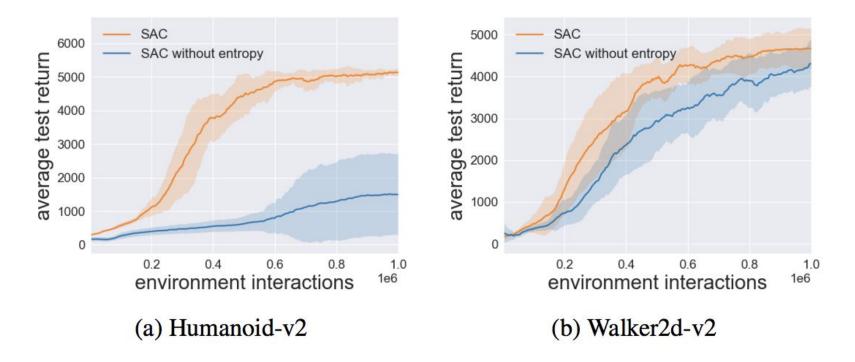




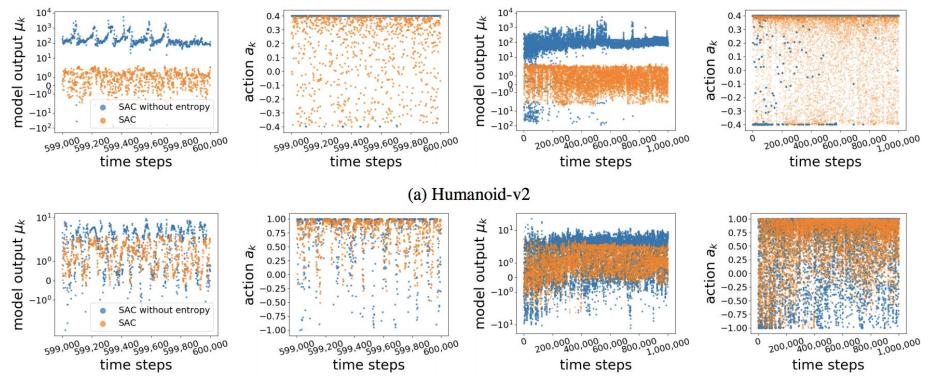


What if $| \mu(s) | >> 1$ over many consecutive states

How Entropy Maximization Helps



(Haarnoja et al., 2018b)



(b) Walker2d-v2

Inverting Gradients

 ∇ a is the gradient of the policy loss w.r.t to a.

If ∇a suggests increasing $a : \nabla a = \nabla a \cdot \frac{a^{max} - a}{a^{max} - a^{min}}$ Otherwise $: \nabla a = \nabla a \cdot \frac{a - a^{min}}{a^{max} - a^{min}}$

(Hausknecht & Stone, 2015)

We can do something even **SIMPLER**

Output Normalization

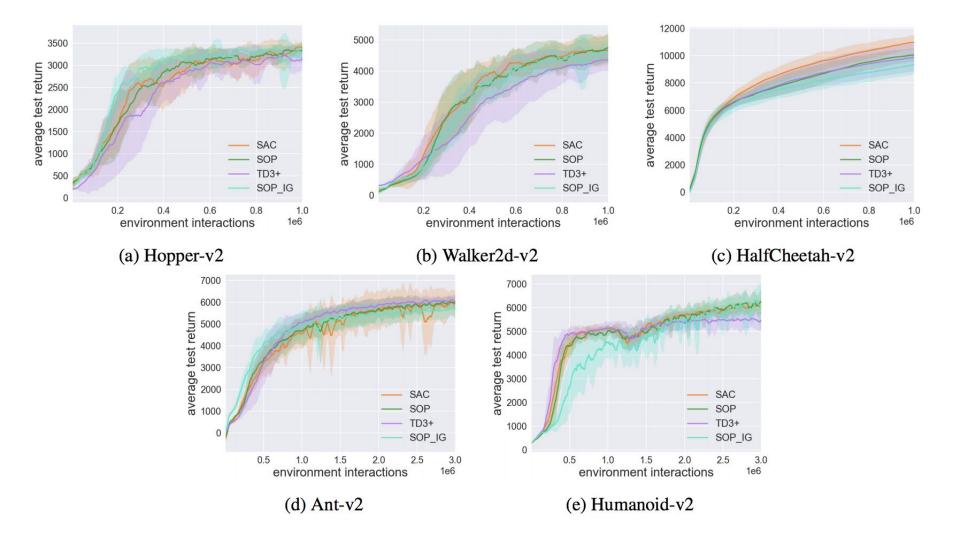
Replace entropy maximization → Streamlined Off-Policy (SOP)

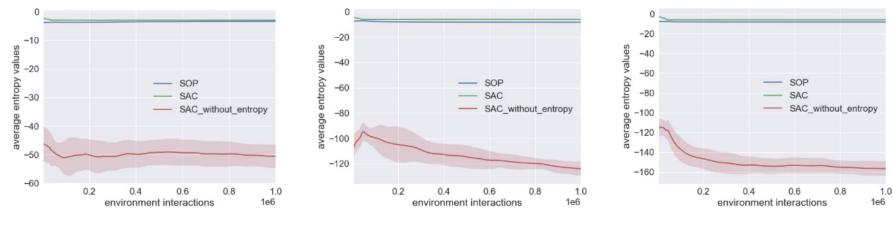


Κ

$$\begin{split} \mu(s) &= (\mu_1(s), \, \mu_2(s), \, \dots, \, \mu_K(s)) \;; \\ G &= || \; \mu(s) \; ||_1 \; / \; K \\ \text{If } G &> 1, \; \mu'_k(s) \; \ \leftarrow \; \mu_k(s) \; / \; G; \; \text{for all } k = 1, \; \dots \;, \end{split}$$

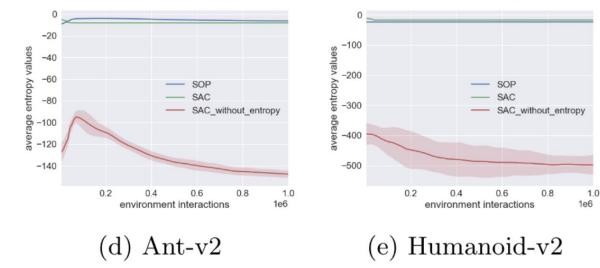
	DDPG	TD3	SAC	SOP
Target Q Network	✓	✓	\checkmark	✓
Target Policy Network	✓	✓		
Double Q-Learning		✓	✓	
Target Policy Smoothing		✓	✓	✓
Delayed Policy Update		✓		
Entropy Maximization			✓	
Normalization				



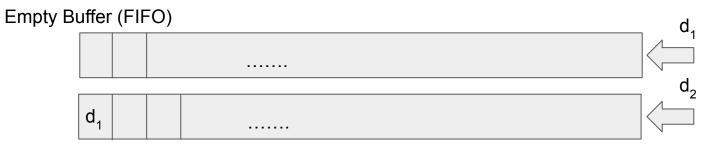


(b) Walker2d-v2

(c) HalfCheetah-v2

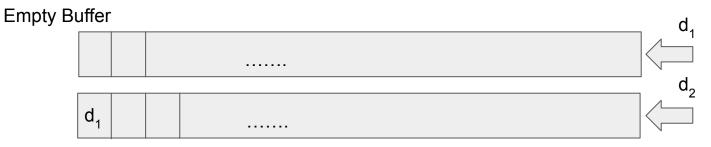


Why Non-uniform Sampling



Uniform Sampling: expected number of times being sampled $E(d_1) = 1$

Why Non-uniform Sampling

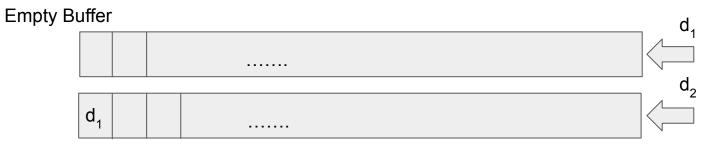


Uniform Sampling: expected number of times being sampled $E(d_1) = 1$

Uniform Sampling: expected number of times being sampled $E(d_1) = 1 + \frac{1}{2}$; $E(d_2) = \frac{1}{2}$

.

Why Non-uniform Sampling



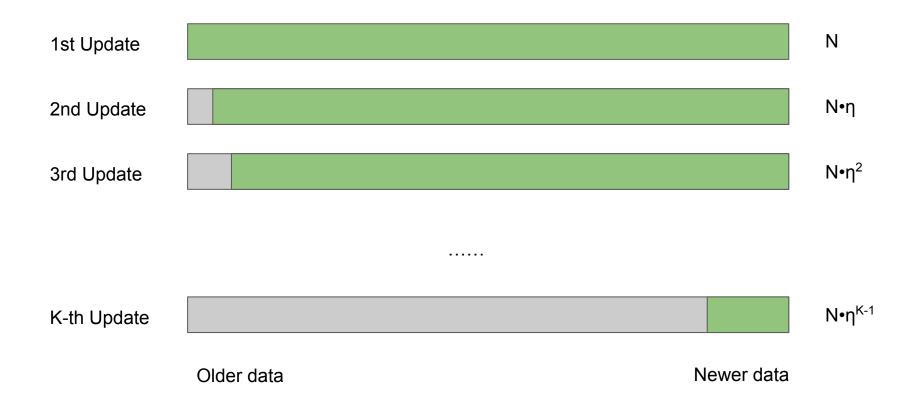
Uniform Sampling: expected number of times being sampled $E(d_1) = 1$

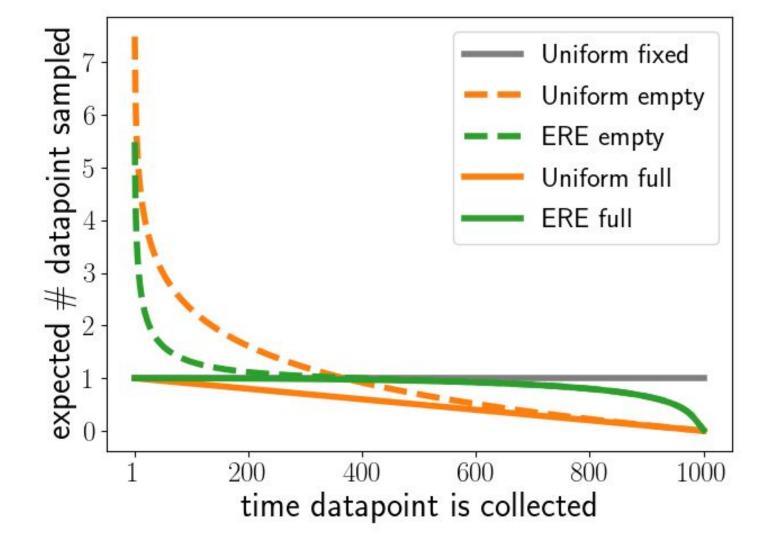
Uniform Sampling: expected number of times being sampled $E(d_1) = 1 + \frac{1}{2}$; $E(d_2) = \frac{1}{2}$

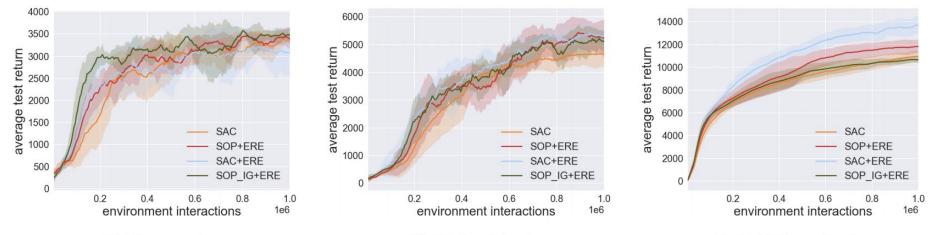
.

Uniform Sampling: expected number of times being sampled $E(d_t) = \sum_{k=1,...,T} 1/k$

Emphasizing Recent Experience (ERE)



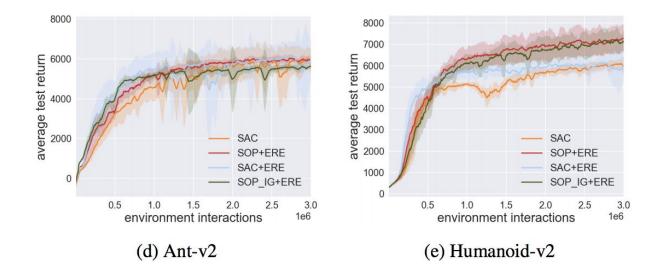




(a) Hopper-v2

(b) Walker2d-v2

(c) HalfCheetah-v2



Conclusion

Showed that the primary role of maximum entropy RL for the MuJoCo benchmark is to maintain satisfactory exploration in the presence of bounded action spaces.

A new streamlined algorithm which does not employ entropy maximization but nevertheless matches the sampling efficiency and robust performance of SAC for the MuJoCo benchmarks.

Combined our streamlined algorithm with a simple non-uniform sampling scheme to create a simple algorithm that achieves state-of-the art performance for the MuJoCo benchmark.

Thank you so much for listening!