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Nearest neighbor search

Dataset D = {xi,...x,}, x; € RY

For a given query q let x € D be its nearest neighbor
Exact NNS: find x

c-ANN: find such x’ that p(g,x’) < ¢cp(q,x)
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Graph-based algorithms

Main idea:

e Construct a proximity graph, where each element of D is connected to
its nearest neighbors

e For a given query g, take an element in D and make greedy steps
towards g on the graph

@ At each step, check the neighbors of the current node

Malkov Y., Yashunin D. “Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs”’. |IEEE transactions on pattern analysis
and machine intelligence, 2018.
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Graph-based algorithms

Main idea:

e Construct a proximity graph, where each element of D is connected to
its nearest neighbors

e For a given query g, take an element in D and make greedy steps
towards g on the graph

@ At each step, check the neighbors of the current node

Additional heuristics:
@ Adding shortcut edges

@ Beam search: maintaining a dynamic list of several candidates instead
of just one optimal point

@ Diversification of neighbors

Malkov Y., Yashunin D. “Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs”’. |IEEE transactions on pattern analysis
and machine intelligence, 2018.

Liudmila Prokhorenkova Graph-based Nearest Neighbor Search ICML 2020 3/16



Overview of our work

@ Graph-based methods are known to outperform other approaches in
many large-scale applications, but they do not have much theoretical
support1

@ We fill this gap assuming the uniform distribution of data

e We mostly focus on the dense regime (d < log n)

@ We show the effect of:

» Local kNN edges
» Properly distributed long edges
» Beam search
o We empirically motivate our assumptions about dense regime and

uniform distribution

LWe are aware of one related study: Laarhoven, T. “Graph-based time-space
trade-offs for approximate near neighbors”. SoCG 2018.
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Dense and sparse regimes

o Dense regime: d < logn

@ Sparse regime: d > logn

Assuming the uniform distribution over a d-dimensional sphere:

o Dense regime: the nearest neighbor is at distance n=1/4 — 0

@ Sparse regime: the nearest neighbor is at distance &~ /2, as other
elements
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Dense and sparse regimes

Complexity of known exact algorithms scales exponentially in d, which is a
problem in sparse regime d > log n.

While real-world datasets may have large d, they usually have lower
intrinsic dimension.

Fortunately, most graph-based algorithms do not care about the original
dimension.
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Plan:

NN graphs in dense regime
Shortcut edges
Beam search

Empirical illustrations
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Plain NN graphs in dense regime

For any constant M > 1, let G(M) be a graph obtained by connecting x;
and x; iff p(x;,x;) < arcsin (M nfl/d)_

Theorem (simplified)

Let d > loglogn and M > /2.

Then, with probability 1 — o(1), G(M)-based NNS solves the NN problem.
Time complexity is © (d1/2 . pt/d. I\/Id).

Space complexity is © (n ~d=Y2. M9 - log n).

o The expected number of neighbors is ©(d~1/2 . M)
@ So, the complexity of one step is ©(d'/? . M9)
@ The number of steps is © (nl/d)
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Long edges on a lattice

Kleinberg's result:

Consider a 2-dimensional grid
Each node has local edges + one random long link

The probability of a link from u to v is proportional to p(u, v)™"

If r = 2, the greedy graph-based search finds the target element in
O (log? n) steps
Any other r gives at least n¥ with ¢ >0

Kleinberg J. “The small-world phenomenon: An algorithmic perspective”. ACM
symposium on Theory of computing, 2000.
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Long edges in our setting

p(u,v)”?

P(edge from u to v) = S )
w#u ’

Theorem

Sampling one long edge for each node reduces the number of steps to
O(log? n) (with high probability).

@ Importantly, we allow d — o
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Theorem

Sampling one long edge for each node reduces the number of steps to
O(log? n) (with high probability).

@ Importantly, we allow d — oo

o Long edges can guarantee O (log? n) steps

o Plain NN graphs give © (n/?) steps

log n
2loglogn

@ So, reducing the number of steps is reasonable if d <
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Dimension-independent probabilities

o = = E A
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Dimension-independent probabilities

Let prank(u, v) = (k/n)Y/? if v is the k-th neighbor of u

p(u, v) < prank(u, v) for uniform datasets (the number of nodes at distance

p grows as p9)

x| =

P(edge to k-th neighbor)

This distribution is dimension-independent
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Beam search

Theorem (informal)

Using beam search allows to get space complexity L9 and time complexity
RILY, where L,R > 1 and Lz(l— )>1

d/2
@ In particular, time complexity can be reduced to (%) /

o Without beam search we can get only 29/2
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Beam search
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Beam search
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Beam search
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Beam search
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Synthetic uniform datasets
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Uniformization and dimensionality reduction

@ Our theoretical guarantees hold for uniform data

@ For a general dataset, we can map it to a smaller dimension and make
it more uniform while trying to preserve the neighborhoods?

@ We perform beam search in the lower-dimensional space and then
evaluate the candidates in the original space

o This allows to significantly improve the quality of plain NN graphs
supplied with long edges

@ See details in our paper

2Sablayrolles, A., Douze, M., Schmid, C., Jégou, H. "Spreading vectors for similarity
search”. ICLR 2019.
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