Motivation	Our Method	Related Work	Experiments 00000000	Summary o

On Leveraging Pretrained GANs for Generation with Limited Data

Miaoyun Zhao, Yulai Cong, Lawrence Carin

Duke University

August 11, 2020

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Motivation 000	Our Method	Related Work	Experiments	Summary o
Table of C	Contents			

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Motivation	Our Method	Related Work	Experiments	Summary
●○○	ooooooo		0000000	O
Motivation				

Generated from BigGAN

Generated from StyleGAN

GANs can generate highly realistic synthetic ("fake") images

- Can augment training data, with new & realistic samples
- Useful in settings with limited training data

However, training the GAN itself is challenging with limited data

 Training GANs with limited data may yield overfitting or training/mode collapse

Propose to transfer additional information to facilitate GAN training with limited data

 Leverage valuable generalizable knowledge within GANs trained on different large-scale datasets

Motivation	Our Method	Related Work	Experiments	Summary
○●○	0000000		00000000	0
Motivation				

Key observations associated with generalizable knowledge:

- For classification models pretrained on large-scale datasets
 - lower-level filters (those close to the observation x) are fairly general/transferable (Gabor-like)
 - higher-level filters are more task-specific

- For pretrained GAN generators
 - lower-level layers portray generally-applicable local patterns
 - higher-level layers represent more specific semantic objects or object parts
- It's data-demanding to train well-behaved low-level filters
 - transfer often delivers better efficiency and performance

Motivation ○○●	Our Method	Related Work	Experiments	Summary o
Our Contrik	outions			

To better transfer common knowledge for generators, for design of generators based on limited data

• From GANs pretrained on large-scale source datasets

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Motivation	Our Method ●oooooo	Related Work	Experiments	Summary o
Table of	Contents			

- 3 Related Work
- 4 Experiments

5 Summary

Motivation	Our Method	Related Work	Experiments 0000000	Summary O
Notation				

- Within a GAN, there is a generator (actor) and a discriminator (critic)
- "General-Part" of either the generator or discriminator is composed of those model layers that are generally applicable across a wide range of images
- "Specific-Part" of generator or discriminator composed of layers that are specifically associated with a class of images
- Seek to transfer General-Part from GANs learned in data-rich settings, to those for which there are limited data
- The General-Part tends to be at and near layers that touch the input (discriminator) or output (generator) image

Motivation	Our Method	Related Work	Experiments	Summary
	000000			

1. On Specifying the General-Part for Transfer

Source model: the GP-GAN¹ pretrained on ImageNet **Target dataset**: the perceptually-distinct CelebA

¹Which training methods for GANs do actually converge? ICML 2018. < □ > < □ > < □ > < □ > < □ > < ○ < ○

Motivation	Our Method	Related Work	Experiments	Summary
	0000000			

1. On Specifying the General-Part for Transfer

Motivation	Our Method	Related Work	Experiments	Summary
	0000000			

2. On Tailoring the High-Level Specific-Part

Even with the G4D2 general-part, mode collapse may still happen on small data (Flowers 8,189).

ъ

Style blocks deliver

- style mixing

cheaper computation < >>

Motivation	Our Method	Related Work	Experiments	Summary
	0000000			

3. On Better Adaption of the Transferred General-Part

We introduce the adaptive filter modulation (AdaFM) to

- better adapt the transferred general-part to target domains
- relax the requirements for the general-part

Given a Conv filter $\mathbf{W} \in \mathbb{R}^{C_{\text{out}} \times C_{\text{in}} \times K_1 \times K_2}$, AdaFM uses learnable $\gamma \in \mathbb{R}^{C_{\text{out}} \times C_{\text{in}}}$ and $\beta \in \mathbb{R}^{C_{\text{out}} \times C_{\text{in}}}$ to modulate its statistics

$$\mathbf{W}_{i,j,:,:}^{\mathsf{AdaFM}} = \boldsymbol{\gamma}_{i,j} \mathbf{W}_{i,j,:,:} + \boldsymbol{\beta}_{i,j} \tag{1}$$

Motivation	Our Method	Related Work	Experiments	Summary
	000000			

3. On Better Adaption of the Transferred General-Part

The underlying assumption is

- basic shape/pattern within $\mathbf{W}_{i,j,:,:} \Rightarrow$ generally applicable
- statistics/correlation among *i*-,*j*-channels ⇒ target-specific
- empirically verified in the experiments

- Source and target filters share the same basic shape/pattern but with different among-channel correlations.
- AdaFM learns $\gamma_{i,:} = [1/9, 9, 1]$ to adapt source $W_{i,:,:,:}$ to target $W_{i,:,:,:}^{Target}$.

Motivation	Our Method	Related Work ●○	Experiments	Summary o
Table of	Contents			

Experiments

5 Summary

Motivation	Our Method	Related Work ○●	Experiments	Summary o
Related '	Work			

Exploit GANs to transfer knowledge for limited-data generation.

TransferGAN: Transferring GANs: generating images from limited data. ECCV 2018. BSA: Image generation from small datasets via batch statistics adaptation. ICCV 2019. MineGAN: MineGAN: effective knowledge transfer from GANs to target domains with few images. CVPR 2020. FreezeD: Freeze discriminator: A simple baseline for fine-tuning GANs. arXiv 2020.

э

Motivation	Our Method	Related Work	Experiments •ooooooo	Summary o
Table of	Contents			

- Our Method
- 3 Related Work
- 4 Experiments

5 Summary

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Motivation 000	Our Method	Related Work	Experiments o●oooooo	Summary O
Experimen	ts			

Comparisons with existing/naive methods on

- 1. moderate or small datasets
- 2. limited datasets with 1,000 images
- 3. extremely limited datasets with 25 images

Analysis of the proposed techniques

- 1. ablation study of our method
- 2. modulations from AdaFM
- 3. style augmentation/mixing with the tailored specific-part

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation	Our Method	Related Work	Experiments	Summary
			0000000	

Comparisons with Existing/Naive Methods

1. On moderate or small datasets

CelebA (202,599), Flowers (8,189), Cars (8,144), Cathedral (7,350)

Figure 8. FID scores (left) and generated images (right) of Scratch and Our method on 4 target datasets. The transferred general-part dramatically accelerates the training, leading to better performance.

Table 2. FID scores of the compared methods after 60,000 training iterations. Lower is better. "Failed" means training/mode collapse.

Method\Target	CelebA	Flowers	Cars	Cathedral
TransferGAN	18.69	failed	failed	failed
Scratch	16.51	29.65	11.77	30.59
Our	9.90	16.76	10.10	15.78

- TransferGAN vs Scratch/Our: tailored specific-part >>>> overfitting
- Scratch vs Our: (i) the transferred general-part, (ii) AdaFM

Motivation	Our Method	Related Work	Experiments	Summary
			0000000	

Comparisons with Existing/Naive Methods

2. On limited datasets with 1,000 images

Random selection >>>>>>>>>> CelebA-1K, Flowers-1K, and Cathedral-1K

Figure 10. FID scores on CelebA-1K (left), Flower-1K (center), and Cathedral-1K (right). The best FID achieved is marked with a star.

Method\Target	CelebA-1K	Flowers-1K	Cathedral-1K
Scratch	20.75	58.18	39.97
Our-G4D2	14.19	46.68	38.17
Our-G4D3	13.99	-	-
Our-G4D5	19.77	43.05	35.88

Table 3. The best FID achieved within 60,000 training iterations on the limited-1K datasets. Lower is better.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Motivation	Our Method	Related Work	Experiments	Summary
			00000000	

Comparisons with Existing/Naive Methods

3. On extremely limited datasets with 25 images

Random selection >>>> Flowers-25 and FFHQ-25, following BSA.²

Our: G4D6 general-part, GP on both real and fake samples

- More realistic generation
- Smooth interpolations on the learned data manifold

Motivation	Our Method	Related Work	Experiments	Summary
			00000000	

Analysis of the Proposed Techniques

1. Ablation Study of Our Method

- GP-GAN: no filters are transferred; baseline for GPHead
- GPHead: GP-GAN architecture + transferred general-part
- SmallHead: transferred general-part + tailored specific-part
- Our: SmallHead + the proposed AdaFM

Figure 9. FID scores from the ablation studies of our method on CelebA (left) and the 3 small datasets of Flower, Cars, and Cathedral (right).

Table 1. FID scores from ablation studies on our method after 60,000 training iterations. Lower is better.

Method\Target	CelebA	Flowers	Cars	Cathedral
(a)GP-GAN	19.48	failed	failed	failed
(b)GPHead	11.15	failed	failed	failed
(c)SmallHead	12.42	29.94	20.64	34.83
(d)Our	9.90	16.76	10.10	15.78

Motivation	Our Method	Related Work	Experiments	Summary
			00000000	

Analysis of the Proposed Techniques

2. Modulations from AdaFM

Boxplots of the learned scale γ and shift β on target datasets

- All filters are used in target domains but with modulations
- Different target datasets prefer different modulations

Motivation	Our Method	Related Work	Experiments	Summary
			0000000	

Analysis of the Proposed Techniques

3. Style Mixing/Augmentation with the Tailored Specific-Part

Style mixing is extremely appealing for limited-data applications

- Vast novel generation via style/attribute combinations
- Diverse synthetic augmentation

Motivation	Our Method	Related Work	Experiments 0000000	Summary •
Conclusi	ons			

- For lifelong learning, important to appropriately transfer knowledge from the past to new tasks
- Such transfer critical for performing model learning with limited data
- Have developed a novel means of performing lifelong learning with GAN models
- Allows generation of realistic synthetic data based on limited training data
- By style augmentation, allows significant expansion of training data, generating new and realistic data for training other models (e.g., supervised models)