
Motivation Our Method Related Work Experiments Summary

On Leveraging Pretrained GANs for
Generation with Limited Data

Miaoyun Zhao, Yulai Cong, Lawrence Carin

Duke University

August 11, 2020



Motivation Our Method Related Work Experiments Summary

Table of Contents

1 Motivation

2 Our Method

3 Related Work

4 Experiments

5 Summary



Motivation Our Method Related Work Experiments Summary

Motivation

Generated from BigGAN Generated from StyleGAN

GANs can generate highly realistic synthetic (“fake”) images
Can augment training data, with new & realistic samples
Useful in settings with limited training data

However, training the GAN itself is challenging with limited data
Training GANs with limited data may yield overfitting or
training/mode collapse

Propose to transfer additional information to facilitate GAN
training with limited data

Leverage valuable generalizable knowledge within GANs
trained on different large-scale datasets
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Motivation

Key observations associated with generalizable knowledge:
For classification models pretrained on large-scale datasets

lower-level filters (those close to the observation x) are fairly
general/transferable (Gabor-like)
higher-level filters are more task-specific

Feature 

Extractor

Classifier Classifier

Source Target

Transfer

Low-level

High-level

Feature Extractor

(Frozen/Finetuning)

For pretrained GAN generators
lower-level layers portray generally-applicable local patterns
higher-level layers represent more specific semantic objects
or object parts

It’s data-demanding to train well-behaved low-level filters
transfer often delivers better efficiency and performance
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Our Contributions

To better transfer common knowledge for generators, for design
of generators based on limited data

From GANs pretrained on large-scale source datasets
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Notation

Within a GAN, there is a generator (actor) and a
discriminator (critic)

“General-Part” of either the generator or discriminator is
composed of those model layers that are generally
applicable across a wide range of images

“Specific-Part” of generator or discriminator composed of
layers that are specifically associated with a class of images

Seek to transfer General-Part from GANs learned in
data-rich settings, to those for which there are limited data

The General-Part tends to be at and near layers that touch
the input (discriminator) or output (generator) image
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1. On Specifying the General-Part for Transfer

(d) Our(b) GPHead(a) GP-GAN
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Source model: the GP-GAN1 pretrained on ImageNet
Target dataset: the perceptually-distinct CelebA
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1
Which training methods for GANs do actually converge? ICML 2018.
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1. On Specifying the General-Part for Transfer
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2. On Tailoring the High-Level Specific-Part
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Even with the G4D2 general-part,
mode collapse may still happen
on small data (Flowers 8,189).

Style blocks deliver
disentangled high-level attributes ≫ efficient exploration of
underlying data manifold ≫ better generative quality
style mixing cheaper computation
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3. On Better Adaption of the Transferred General-Part
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We introduce the adaptive filter modulation (AdaFM) to
better adapt the transferred general-part to target domains
relax the requirements for the general-part

Given a Conv filter W ∈ RCout×Cin×K1×K2 , AdaFM uses learnable
γ ∈ RCout×Cin and β ∈ RCout×Cin to modulate its statistics

WAdaFM
i,j,:,: = γi,jWi,j,:,: + βi,j (1)
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3. On Better Adaption of the Transferred General-Part

The underlying assumption is
basic shape/pattern within Wi,j,:,: ⇒ generally applicable
statistics/correlation among i-,j-channels ⇒ target-specific
empirically verified in the experiments

Source and target filters share the same basic
shape/pattern but with different among-channel correlations.
AdaFM learns γi,: = [1/9, 9, 1] to adapt source Wi,:,:,: to
target WTarget

i,:,:,: .
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Related Work

Exploit GANs to transfer knowledge for limited-data generation.
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TransferGAN: Transferring GANs: generating images from limited data. ECCV 2018.
BSA: Image generation from small datasets via batch statistics adaptation. ICCV 2019.
MineGAN: MineGAN: effective knowledge transfer from GANs to target domains with few images. CVPR 2020.
FreezeD: Freeze discriminator: A simple baseline for fine-tuning GANs. arXiv 2020.
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Experiments

Comparisons with existing/naive methods on
1. moderate or small datasets
2. limited datasets with 1,000 images
3. extremely limited datasets with 25 images

Analysis of the proposed techniques
1. ablation study of our method
2. modulations from AdaFM
3. style augmentation/mixing with the tailored specific-part
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Comparisons with Existing/Naive Methods

1. On moderate or small datasets
CelebA (202,599), Flowers (8,189), Cars (8,144), Cathedral (7,350)On Leveraging Pretrained GANs for Limited-Data Generation

Figure 8. FID scores (left) and generated images (right) of Scratch and Our method on 4 target datasets. The transferred general-part
dramatically accelerates the training, leading to better performance.

Table 2. FID scores of the compared methods after 60,000 training
iterations. Lower is better. “Failed” means training/mode collapse.

Method\Target CelebA Flowers Cars Cathedral
TransferGAN 18.69 failed failed failed

Scratch 16.51 29.65 11.77 30.59
Our 9.90 16.76 10.10 15.78

in challenging settings with only 1,000 or 25 target images;
(iv) analyzing why/how AdaFM leads to boosted perfor-
mance; and (v) illustrating the potential in exploiting the
tailored specific-part for data augmentation for limited-data
applications. Generated images and FID scores (Heusel
et al., 2017) are used to evaluate the generative performance.
Detailed experimental settings and more results are pro-
vided in the Appendix. Code is available at github.com/
MiaoyunZhao/GANTransferLimitedData.

4.1. Comparisons with Existing/Naive Methods

To demonstrate our contributions over existing/naive meth-
ods, we compare our method with (i) TransferGAN (Wang
et al., 2018b), which initializes with the pretrained GP-
GAN model (accordingly the same network architectures
are adopted; refer to Figure 1(f)), followed by fine-tuning all
parameters on the target data, and (ii) Scratch, which trains
a model with the same architectures as ours (see Figure 1(h))
from scratch with the target data.

The experimental results are shown in Figure 8, with the
final FID scores summarized in Table 2. Since Transfer-
GAN employs the source (large) GP-GAN architectures, it

may suffer from overfitting if the target data are too lim-
ited, which manifests as training/mode collapse; accord-
ingly, TransferGAN fails on the 3 small datasets: Flowers,
Cars, and Cathedral. By comparison, thanks to the tailored
specific-part, both Scratch and our method train stably on all
target datasets, as shown in Figures 8. Compared to Scratch,
our method shows dramatically increased training efficiency,
thanks to the transferred low-level filters, and significantly
improved generative quality (much better FIDs in Table 2),
which are attributed to both the transferred general-part and
a better adaption to target domains with AdaFM.

4.2. Ablation Study of Our Method

To reveal how each component contributes to the excellent
performance of our method, we consider four experimental
settings in a sequential manner. (a) GP-GAN: adopt the GP-
GAN architectures (similar to Figure 1(f) but all parameters
are trainable and randomly initialized), used as a baseline
where no low-level filters are transferred. (b) GPHead: use
the model in Figure 1(f), used to demonstrate the contribu-
tion of the transferred general-part. (c) SmallHead: employ
the model in Figure 1(g), used to reveal the contribution of
the tailored specific-part. (d) Our: leverage the model in
Figure 1(h), for showing the contribution of the presented
AdaFM.

The FID curves during training and the final FID scores
of the compared methods are shown in Figure 9 and Ta-
ble 1, respectively. By comparing GP-GAN with GPHead
on CelebA, it’s clear that the transferred general-part con-
tributes by dramatically increasing the training efficiency
and by delivering a better generative performance; this is

Figure 9. FID scores from the ablation studies of our method on CelebA (left)
and the 3 small datasets of Flower, Cars, and Cathedral (right).

Table 1. FID scores from ablation studies on our
method after 60,000 training iterations. Lower is better.

Method\Target CelebA Flowers Cars Cathedral
(a)GP-GAN 19.48 failed failed failed
(b)GPHead 11.15 failed failed failed
(c)SmallHead 12.42 29.94 20.64 34.83
(d)Our 9.90 16.76 10.10 15.78

On Leveraging Pretrained GANs for Limited-Data Generation

Figure 8. FID scores (left) and generated images (right) of Scratch and Our method on 4 target datasets. The transferred general-part
dramatically accelerates the training, leading to better performance.

Table 2. FID scores of the compared methods after 60,000 training
iterations. Lower is better. “Failed” means training/mode collapse.

Method\Target CelebA Flowers Cars Cathedral
TransferGAN 18.69 failed failed failed

Scratch 16.51 29.65 11.77 30.59
Our 9.90 16.76 10.10 15.78

in challenging settings with only 1,000 or 25 target images;
(iv) analyzing why/how AdaFM leads to boosted perfor-
mance; and (v) illustrating the potential in exploiting the
tailored specific-part for data augmentation for limited-data
applications. Generated images and FID scores (Heusel
et al., 2017) are used to evaluate the generative performance.
Detailed experimental settings and more results are pro-
vided in the Appendix. Code is available at github.com/
MiaoyunZhao/GANTransferLimitedData.

4.1. Comparisons with Existing/Naive Methods

To demonstrate our contributions over existing/naive meth-
ods, we compare our method with (i) TransferGAN (Wang
et al., 2018b), which initializes with the pretrained GP-
GAN model (accordingly the same network architectures
are adopted; refer to Figure 1(f)), followed by fine-tuning all
parameters on the target data, and (ii) Scratch, which trains
a model with the same architectures as ours (see Figure 1(h))
from scratch with the target data.

The experimental results are shown in Figure 8, with the
final FID scores summarized in Table 2. Since Transfer-
GAN employs the source (large) GP-GAN architectures, it
may suffer from overfitting if the target data are too lim-

ited, which manifests as training/mode collapse; accord-
ingly, TransferGAN fails on the 3 small datasets: Flowers,
Cars, and Cathedral. By comparison, thanks to the tailored
specific-part, both Scratch and our method train stably on all
target datasets, as shown in Figures 8. Compared to Scratch,
our method shows dramatically increased training efficiency,
thanks to the transferred low-level filters, and significantly
improved generative quality (much better FIDs in Table 2),
which are attributed to both the transferred general-part and
a better adaption to target domains with AdaFM.

4.2. Ablation Study of Our Method

To reveal how each component contributes to the excellent
performance of our method, we consider four experimental
settings in a sequential manner. (a) GP-GAN: adopt the GP-
GAN architectures (similar to Figure 1(f) but all parameters
are trainable and randomly initialized), used as a baseline
where no low-level filters are transferred. (b) GPHead: use
the model in Figure 1(f), used to demonstrate the contribu-
tion of the transferred general-part. (c) SmallHead: employ
the model in Figure 1(g), used to reveal the contribution of
the tailored specific-part. (d) Our: leverage the model in
Figure 1(h), for showing the contribution of the presented
AdaFM.

The FID curves during training and the final FID scores
of the compared methods are shown in Figure 9 and Ta-
ble 1, respectively. By comparing GP-GAN with GPHead
on CelebA, it’s clear that the transferred general-part con-
tributes by dramatically increasing the training efficiency
and by delivering a better generative performance; this is
consistent with what’s revealed in the previous section (by

Figure 9. FID scores from the ablation studies of our method on CelebA (left)
and the 3 small datasets of Flower, Cars, and Cathedral (right).

Table 1. FID scores from ablation studies on our
method after 60,000 training iterations. Lower is better.

Method\Target CelebA Flowers Cars Cathedral
(a)GP-GAN 19.48 failed failed failed
(b)GPHead 11.15 failed failed failed
(c)SmallHead 12.42 29.94 20.64 34.83
(d)Our 9.90 16.76 10.10 15.78

TransferGAN vs Scratch/Our: tailored specific-part ≫ overfitting

Scratch vs Our: (i) the transferred general-part, (ii) AdaFM
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Comparisons with Existing/Naive Methods

2. On limited datasets with 1,000 images
Random selection ≫ CelebA-1K, Flowers-1K, and Cathedral-1K

On Leveraging Pretrained GANs for Limited-Data Generation

Figure 10. FID scores on CelebA-1K (left), Flower-1K (center), and Cathedral-1K (right). The best FID achieved is marked with a star.

Table 3. The best FID achieved within 60,000 training iterations on
the limited-1K datasets. Lower is better.

Method\Target CelebA-1K Flowers-1K Cathedral-1K
Scratch 20.75 58.18 39.97

Our-G4D2 14.19 46.68 38.17
Our-G4D3 13.99 - -
Our-G4D5 19.77 43.05 35.88

consistent with what’s revealed in the previous section (by
comparing Scratch with Our in Figure 8 and Table 2). Com-
paring SmallHead to both GPHead and GP-GAN in Table 1
indicates that the tailored specific-part helps alleviate over-
fitting and accordingly delivers stable training. By better
adapting the transferred general-part to target domains, the
proposed AdaFM contributes most to the boosted perfor-
mance (compare SmallHead with Our in Figure 9 and Table
1), empirically confirming our instinct in Section 3.3.

4.3. Extremely Limited-Data Generation

To verify the effectiveness of the proposed techniques in
more challenging settings, we consider limited-data genera-
tion with only 1,000 or 25 target samples. Specifically, we
randomly select 1,000 images from CelebA, Flowers, and

Cathedral to form their limited-1K variants, termed CelebA-
1K, Flowers-1K, and Cathedral-1K, respectively. Since
TransferGAN fails when given about 8,000 target images
(see Section 4.1), we omit it and only compare our method
with Scratch on these 1K variants. Regarding the extremely
limited setup with 25 samples, we follow Noguchi & Harada
(2019) to select 25 images from Flower and FFHQ (Karras
et al., 2019a) to form the Flower-25 and FFHQ-25 datasets,
on which their BSA and our method are compared.

The FID curves versus training iterations on the 1K datasets
are shown in Figure 10, with the lowest FIDs summarized in
Table 3. In the challenging settings with only 1,000 training
data, both Scratch and our method with the G4D2 general-
part (labeled Our-G4D2) suffer from overfitting. Scratch
actually suffers more due to more trainable parameters; as

BSA

(129.8)

Our 

(85.4)

BSA

(123.2)

Our 

(90.79)

BSA

(129.8)

Our 

(85.4)
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(123.2)
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(90.79)

Figure 11. Generated images and FID scores of the compared methods on Flower-25 (left) and FFHQ-25 (right). The BSA results are
copied from the original paper (Noguchi & Harada, 2019).

Figure 12. Interpolations between two random samples from our method on Flower-25 (first row) and FFHQ-25 (second row).

On Leveraging Pretrained GANs for Limited-Data Generation

Figure 10. FID scores on CelebA-1K (left), Flower-1K (center), and Cathedral-1K (right). The best FID achieved is marked with a star.

Table 3. The best FID achieved within 60,000 training iterations on
the limited-1K datasets. Lower is better.

Method\Target CelebA-1K Flowers-1K Cathedral-1K
Scratch 20.75 58.18 39.97

Our-G4D2 14.19 46.68 38.17
Our-G4D3 13.99 - -
Our-G4D5 19.77 43.05 35.88

comparing Scratch with Our in Figure 8 and Table 2). Com-
paring SmallHead to both GPHead and GP-GAN in Table 1
indicates that the tailored specific-part helps alleviate over-
fitting and accordingly delivers stable training. By better
adapting the transferred general-part to target domains, the
proposed AdaFM contributes most to the boosted perfor-
mance (compare SmallHead with Our in Figure 9 and Table
1), empirically confirming our instinct in Section 3.3.

4.3. Extremely Limited-Data Generation

To verify the effectiveness of the proposed techniques in
more challenging settings, we consider limited-data genera-
tion with only 1,000 or 25 target samples. Specifically, we
randomly select 1,000 images from CelebA, Flowers, and
Cathedral to form their limited-1K variants, termed CelebA-

1K, Flowers-1K, and Cathedral-1K, respectively. Since
TransferGAN fails when given about 8,000 target images
(see Section 4.1), we omit it and only compare our method
with Scratch on these 1K variants. Regarding the extremely
limited setup with 25 samples, we follow Noguchi & Harada
(2019) to select 25 images from Flower and FFHQ (Karras
et al., 2019a) to form the Flower-25 and FFHQ-25 datasets,
on which their BSA and our method are compared.

The FID curves versus training iterations on the 1K datasets
are shown in Figure 10, with the lowest FIDs summarized in
Table 3. In the challenging settings with only 1,000 training
data, both Scratch and our method with the G4D2 general-
part (labeled Our-G4D2) suffer from overfitting. Scratch
actually suffers more due to more trainable parameters; as
our method has a much higher training efficiency, a false
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Figure 11. Generated images and FID scores of the compared methods on Flower-25 (left) and FFHQ-25 (right). The BSA results are
copied from the original paper (Noguchi & Harada, 2019).

Figure 12. Interpolations between two random samples from our method on Flower-25 (first row) and FFHQ-25 (second row).
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Comparisons with Existing/Naive Methods

3. On extremely limited datasets with 25 images
Random selection ≫ Flowers-25 and FFHQ-25, following BSA.2
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Our 
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Our: G4D6 general-part, GP on both real and fake samples
More realistic generation
Smooth interpolations on the learned data manifold

2
Image generation from small datasets via batch statistics adaptation. ICCV 2019.
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Analysis of the Proposed Techniques

1. Ablation Study of Our Method
GP-GAN: no filters are transferred; baseline for GPHead
GPHead: GP-GAN architecture + transferred general-part
SmallHead: transferred general-part + tailored specific-part
Our: SmallHead + the proposed AdaFM

On Leveraging Pretrained GANs for Limited-Data Generation

Figure 8. FID scores (left) and generated images (right) of Scratch and Our method on 4 target datasets. The transferred general-part
dramatically accelerates the training, leading to better performance.

Table 2. FID scores of the compared methods after 60,000 training
iterations. Lower is better. “Failed” means training/mode collapse.

Method\Target CelebA Flowers Cars Cathedral
TransferGAN 18.69 failed failed failed

Scratch 16.51 29.65 11.77 30.59
Our 9.90 16.76 10.10 15.78

in challenging settings with only 1,000 or 25 target images;
(iv) analyzing why/how AdaFM leads to boosted perfor-
mance; and (v) illustrating the potential in exploiting the
tailored specific-part for data augmentation for limited-data
applications. Generated images and FID scores (Heusel
et al., 2017) are used to evaluate the generative performance.
Detailed experimental settings and more results are pro-
vided in the Appendix. Code is available at github.com/
MiaoyunZhao/GANTransferLimitedData.

4.1. Comparisons with Existing/Naive Methods

To demonstrate our contributions over existing/naive meth-
ods, we compare our method with (i) TransferGAN (Wang
et al., 2018b), which initializes with the pretrained GP-
GAN model (accordingly the same network architectures
are adopted; refer to Figure 1(f)), followed by fine-tuning all
parameters on the target data, and (ii) Scratch, which trains
a model with the same architectures as ours (see Figure 1(h))
from scratch with the target data.

The experimental results are shown in Figure 8, with the
final FID scores summarized in Table 2. Since Transfer-
GAN employs the source (large) GP-GAN architectures, it

may suffer from overfitting if the target data are too lim-
ited, which manifests as training/mode collapse; accord-
ingly, TransferGAN fails on the 3 small datasets: Flowers,
Cars, and Cathedral. By comparison, thanks to the tailored
specific-part, both Scratch and our method train stably on all
target datasets, as shown in Figures 8. Compared to Scratch,
our method shows dramatically increased training efficiency,
thanks to the transferred low-level filters, and significantly
improved generative quality (much better FIDs in Table 2),
which are attributed to both the transferred general-part and
a better adaption to target domains with AdaFM.

4.2. Ablation Study of Our Method

To reveal how each component contributes to the excellent
performance of our method, we consider four experimental
settings in a sequential manner. (a) GP-GAN: adopt the GP-
GAN architectures (similar to Figure 1(f) but all parameters
are trainable and randomly initialized), used as a baseline
where no low-level filters are transferred. (b) GPHead: use
the model in Figure 1(f), used to demonstrate the contribu-
tion of the transferred general-part. (c) SmallHead: employ
the model in Figure 1(g), used to reveal the contribution of
the tailored specific-part. (d) Our: leverage the model in
Figure 1(h), for showing the contribution of the presented
AdaFM.

The FID curves during training and the final FID scores
of the compared methods are shown in Figure 9 and Ta-
ble 1, respectively. By comparing GP-GAN with GPHead
on CelebA, it’s clear that the transferred general-part con-
tributes by dramatically increasing the training efficiency
and by delivering a better generative performance; this is

Figure 9. FID scores from the ablation studies of our method on CelebA (left)
and the 3 small datasets of Flower, Cars, and Cathedral (right).

Table 1. FID scores from ablation studies on our
method after 60,000 training iterations. Lower is better.

Method\Target CelebA Flowers Cars Cathedral
(a)GP-GAN 19.48 failed failed failed
(b)GPHead 11.15 failed failed failed
(c)SmallHead 12.42 29.94 20.64 34.83
(d)Our 9.90 16.76 10.10 15.78
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Analysis of the Proposed Techniques

2. Modulations from AdaFM
Boxplots of the learned scale γ and shift β on target datasets

All filters are used in target domains but with modulations
Different target datasets prefer different modulations
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Analysis of the Proposed Techniques

3. Style Mixing/Augmentation with the Tailored Specific-Part
Source
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Style mixing is extremely appealing for limited-data applications
Vast novel generation via style/attribute combinations
Diverse synthetic augmentation
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Conclusions

For lifelong learning, important to appropriately transfer
knowledge from the past to new tasks

Such transfer critical for performing model learning with
limited data

Have developed a novel means of performing lifelong
learning with GAN models

Allows generation of realistic synthetic data based on
limited training data

By style augmentation, allows significant expansion of
training data, generating new and realistic data for training
other models (e.g., supervised models)
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