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Set function minimization

Goal: Select collection S of items in V that minimize cost H(S)
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Set function minimization in Machine learning

y A x\ ε

Structured sparse learning Batch Bayesian optimization

Figures from [Mairal et al., 2010, Krause et al., 2008]
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Set function minimization
Ground set V = {1, · · · , d}, set function H : 2V → R

min
S⊆V

H(S)

I Assume: H(∅) = 0, black box oracle to evaluate H

I NP-hard to approximate in general
I Submodularity helps: diminishing returns (DR) property

H(A ∪ {i})−H(A) ≥ H(B ∪ {i})−H(B) for all A ⊆ B

I Efficient minimization

Unconstrained non-submodular minimization Slide 4/ 17



Set function minimization
Ground set V = {1, · · · , d}, set function H : 2V → R

min
S⊆V

H(S)

I Assume: H(∅) = 0, black box oracle to evaluate H
I NP-hard to approximate in general

I Submodularity helps: diminishing returns (DR) property

H(A ∪ {i})−H(A) ≥ H(B ∪ {i})−H(B) for all A ⊆ B

I Efficient minimization

Unconstrained non-submodular minimization Slide 4/ 17



Set function minimization
Ground set V = {1, · · · , d}, set function H : 2V → R

min
S⊆V

H(S)

I Assume: H(∅) = 0, black box oracle to evaluate H
I NP-hard to approximate in general
I Submodularity helps: diminishing returns (DR) property

H(A ∪ {i})−H(A) ≥ H(B ∪ {i})−H(B) for all A ⊆ B

I Efficient minimization

Unconstrained non-submodular minimization Slide 4/ 17



Set function minimization
Ground set V = {1, · · · , d}, set function H : 2V → R

min
S⊆V

H(S)

I Assume: H(∅) = 0, black box oracle to evaluate H
I NP-hard to approximate in general
I Submodularity helps: diminishing returns (DR) property

H(A ∪ {i})−H(A) ≥ H(B ∪ {i})−H(B) for all A ⊆ B
I Efficient minimization

Unconstrained non-submodular minimization Slide 4/ 17



Set function minimization in Machine learning

y A x\ ε

Structured sparse learning Bayesian optimization

H is not submodular

but it is “close” . . .

Figures from [Mairal et al., 2010, Krause et al., 2008]
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Set function minimization in Machine learning

y A x\ ε

Structured sparse learning Bayesian optimization

H is not submodular but it is “close” . . .
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Approximately submodular functions

What if the objective is not submodular, but “close”?
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Approximately submodular functions

What if the objective is not submodular, but “close”?
I Several works on non-submodular maximization

[Das and Kempe, 2011, Bian et al., 2017, Kuhnle et al., 2018,
Horel and Singer, 2016, Hassidim and Singer, 2018]

I Only constrained non-submodular minimization is studied
[Wang et al., 2019, Bai et al., 2016, Qian et al., 2017,
Sviridenko et al., 2017]
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Approximately submodular functions

Can submodular minimization algorithms extend to
such non-submodular functions?
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Overview of main results

Can submodular minimization algorithms extend to
such non-submodular functions? Yes!

I First approximation guarantee
I Efficient simple algorithm: Projected subgradient method
I Extension to noisy setting
I Matching lower-bound showing optimality
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Weakly DR-submodular functions
H is α-weakly DR-submodular [Lehmann et al., 2006], with α > 0 if

H(A ∪ {i})−H(A) ≥ α
(
H(B ∪ {i})−H(B)

)
for all A ⊆ B

I H is submodular⇒ α = 1

I Caveat: H should be monotone H(A) ≤ H(B)⇒ α ≤ 1
H(A) ≥ H(B)⇒ α ≥ 1
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Problem set-up

min
S⊆V

H(S) := F (S)−G(S)

I F and G are both non-decreasing
I F is α-weakly DR-submodular
I G is β-weakly DR-supermodular
I F (∅) = G(∅) = 0
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What set functions have this form?

min
S⊆V

H(S) := F (S)−G(S)

Objectives in several applications: Structured sparse learning,
variance reduction in Bayesian optimization, Bayesian A-optimality
in experimental design [Bian et al., 2017], column subset selection
[Sviridenko et al., 2017].
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What set functions have this form?

min
S⊆V

H(S) := F (S)−G(S)

Decomposition result
Given any set function H, and α, β ∈ (0, 1], αβ < 1, we can write

H(S) = F (S)−G(S)

I F and G are non-decreasing α-weakly DR-submodular
I G is β-weakly DR-supermodular
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Submodular function minimization

min
S⊆V

H(S) = min
s∈[0,1]d

hL(s) (|V | = d)

hL is the Lovász extension of H
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Submodular function minimization

min
S⊆V

H(S) = min
s∈[0,1]d

hL(s) (|V | = d)

hL is the Lovász extension of H

I H is submodular ⇔ Lovász extension
is convex [Lovász, 1983]

I Easy to compute subgradients
[Edmonds, 2003]: Sorting + d function
evaluations of H
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Non-submodular function minimization
Can we use the same strategy?

min
S⊆V

H(S) = min
s∈[0,1]d

hL(s) (|V | = d)

I The Lovász extension hL is not convex anymore
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Non-submodular function minimization
Can we use the same strategy? Almost

min
S⊆V

H(S) := F (S)−G(S) = min
s∈[0,1]d

hL(s) := fL(S)− gL(S)

I The Lovász extension hL is not convex anymore

Main result
I Easy to compute approximate subgradient (= subgradients in
the submodular case):

1
αfL(s′)− βgL(s′) ≥ hL(s) + 〈κ, s′ − s〉, ∀s′ ∈ [0, 1]d

I H approximately submodular ⇒ hL is approximately convex
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Projected subgradient method (PGM)

st+1 = Π[0,1]d(st − ηκt) (PGM)

κt is an approximate subgradient of hL at st
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Projected subgradient method (PGM)

st+1 = Π[0,1]d(st − ηκt) (PGM)

κt is an approximate subgradient of hL at st

min
S⊆V

H(S):= F (S)−G(S)

X PGM does not need to know α, β, F,G, just H

Approximation guarantee
After T iterations of PGM + rounding, we obtain:

H(Ŝ) ≤ 1
α
F (S∗)− βG(S∗) +O( 1√

T
)
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Projected subgradient method (PGM)

st+1 = Π[0,1]d(st − ηκt) (PGM)
κt is an approximate subgradient of hL at st

min
S⊆V

H(S):= F (S)−G(S)

X PGM does not need to know α, β, F,G, just H

Approximation guarantee
After T iterations of PGM + rounding, we obtain:

H(Ŝ) ≤ 1
α
F (S∗)− βG(S∗) +O( 1√

T
)

X Result extends to noisy oracle setting:
P

(
|Ĥ(S)−H(S)| ≤ ε

)
≥ 1− δ
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Can we do better?

General set function minimization (in value oracle model):

min
S⊆V

H(S) := F (S)−G(S)

Inapproximability result
For any δ > 0, no (deterministic or randomized) algorithm achieves

E[H(Ŝ)] ≤ 1
αF (S∗)− βG(S∗)− δ

with less than exponentially many queries.
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Experiment: Structured sparse learning

Problem: Learn x\ ∈ Rd, whose support is an interval, from noisy
linear Gaussian measurements

min
S⊆V

H(S) := λF (S)−G(S)

y A x\ ε

n× d

I Regularizer: F (S) = d+ max(S)−min(S), F (∅) = 0; α = 1
I Loss: G(S) = `(0)−minsupp(x)⊆S `(x), where ` is least
squares loss. G is β-weakly DR-supermodular; β > 0
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Experiment: Structured sparse learning

min
S⊆V

H(S) := λF (S)−G(S)
y A x\ ε

n × d

d = 250, k = 20, σ = 0.01
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Take home message

Approximate submodularity ⇒ guaranteed tight
approximate solutions using efficient convex methods
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