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Overview: Adaptive AMTRL (Adversarial Multi-task Representation Learning)
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Generalization Error The number of tasks does not matter Negligible
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Adversarial Multi-task Representation Learning
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Adversarial Multi-task Representation Learning (AMTRL) has achieved success in various
applications, ranging from sentiment analysis to question answering systems.
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Empirical loss:

Loss of the adversarial module:



Adaptive AMTRL
Adversarial AMTRL aims to minimize the task-averaged empirical risk and enforce the
representation of each task to share an identical distribution. We formulate it as a
constraint optimization problem

min
h

LS(h)

s.t. Ladv − c = 0,

and propose to solve the problem with an augmented Lagrangian method.
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𝜆	 and 𝑟 updates in the training process.



Relatedness for AMTRL

(a) Three 2-d Gaussian distributions  (b) Discriminator (c) Relatedness changing curve
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Adaptive AMTRL
In multi-task learning, tasks regularize each other and improve the generalization of
some tasks. The weights of each task influences the effect of the regularization. This
paper proposes a weighting strategy for AMTRL based on the proposed task
relatedness.

where 1 is a 1×𝑇 vector of all 1, and 𝑅 is the relatedness matrix.

Combining the augmented Lagrangian method with the weighting strategy, optimization
objective of our adaptive AMTRL method is
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PAC Bound and Analysis

LD(h)− LS(h) ≤
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Assume the representation of each task share an identical distribution, we have the
following generalization error bound.

Generalization Error The number of tasks does not matter Negligible

• The generalization error bound for AMTRL is tighter than that for MTRL.
• The number of tasks slightly influence the generalization bound of AMTRL.



Experiments - Relatedness Evolution
Sentiment Analysis and Topic Classification.

Sentiment Analysis. Topic Classification
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Experiments - Classification Accuracy
Sentiment Analysis and Topic Classification.

Sentiment Analysis. Topic Classification



Experiments - Influence of the Number of Tasks
Sentiment Analysis.
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Relative Error:

Error rate for the task
’appeal’.
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