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Black-Box Optimization

Definition: A Black-Box Function
f : Ω→ R, Ω ⊆ Rn is a Black-Box function if one
can sample y = f(x) at x ∈ Ω, but has no prior
knowledge of its analytical form.

Black-Box Optimization (BBO)

x∗ = arg min
x∈Ω

f(x) (1)

For C number of evaluation points, search for x∗ and return the best candidate

x̂ = arg min
xi, i=1,...,C

f(xi) (2)
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Black-Box Optimization: Applications

Machine Learning:

Hyperparameter tuning: all the
non-di�erential parameters of a learning
algorithm.

Reinforcement Learning: Find the optimal
parameters of a policy πθ : s→ a s.t. the
expected utility function is maximized

θ∗ = arg max
θ

Eτ∼πθ [R(τ)]

In the real-world everything is a Black-Box...
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Figure 1: CMA-ES algorithm at work (from Wikipedia)

5 30



BBO methods: Taxonomy

Derivative Free Derivative Based

Line
Search

Local 
Model

The Black-Box Optimization Taxonomy

Powell’s Method 
(1964)

Nedler-Mead
downhill simplex 

(1965)

CMA-ES
(1996)

Conjugate 
Gradient (CG)

Quasi-Newton 
Methods (e.g. BFGS)

SLSQP

COBYLA 
(1994)

EGL
(ours)

IGL/DDPG
(2016)

Assume a di�erentiable function f ∈ C1 and use a
gradient estimation to direct the search process.
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In Line-Search methods, the directional derivative
may be estimated by numerical methods, e.g.

n · ∇f(x) ≈ f(x+ ∆n)− f(x−∆n)

2∆
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BBO methods: Taxonomy
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In Model-Based methods, the gradient can be
estimated by fi�ing a parametric model fθ ≈ f
and following the parametric gradient ∇fθ
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EGL takes Model-Derivative-Based methods
forward:

1. Instead of learning the function and obtain
the parametric gradient. It directly fits a
global model of the gradient from the data.

2. It works with merely locally-integrable
functions.
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Indirect Gradient Learning (IGL)

To develop EGL, let’s take a closer look at Model-Based methods with Neural-Network
parameterization.
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Indirect Gradient Learning (IGL)

Neural-Networks excel in fi�ing models to data fθ ≈ f

1. Given a set of samples around a candidate xk, minimize the MSE objective

θ∗ = arg min
θ

∑
i

‖yi − fθ(xi)‖2

2. Approximate the gradient with the parametric gradient∇f ≈ ∇fθ
3. Take a gradient-descent step

xk+1 = xk − α∇fθ(xk)

4. Sample points around the new candidate and repeat.
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Indirect Gradient Learning (IGL)

Roots in the Deep Deterministic Policy Gradient (DDPG) seminal paper (2016). Have been
applied successfully in robotics domains.

Figure 2: From the DeepMind Control suite Github
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Drawbacks of IGL

Pickle I
The gradient is never explicitly learned,
nor we obtain any guarantees for the
accuracy of its estimation.

Pickle II
For Neural-Networks, the parametric
gradient∇fθ may be discontinuous even
if the objective is continuous.

To overcome these drawbacks of IGL, we wish to learn the gradient explicitly.

Problem
We cannot sample from∇f(x) directly.

Solution: Learning a surrogate

Instead of learning ∇f(x) we learn the mean-gradient gε(x): averages over the gradient in a
volume Vε(x) s.t. ‖x′ − x‖ ≤ ε for all x′ ∈ Vε(x).
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Explicit Gradient Learning (EGL)

Recall the first order Taylor expression for di�erentiable functions

f(x+ τ) = f(x) +∇f(x) · τ +O(‖τ‖2).

Definition: The Mean-Gradient
The mean-gradient at x with ε > 0 averaging radius is

gε(x) = arg min
g∈Rn

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ

where Vε(x) ⊂ Rn is a convex subset s.t. ‖x′ − x‖ ≤ ε for all x′ ∈ Vε(x) and the integral
domain is over τ s.t. x+ τ ∈ Vε(x).
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Characteristics of the Mean-Gradient

gε(x) = arg min
g∈Rn

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ

Benefit I: Continuity

If f(x) is continuous in V s.t. Vε(x) ⊂ V then the mean-gradient is a continuous function at
x.

Benefit II: Controllable Accuracy

For any di�erentiable function f with a continuous gradient, there is κg > 0, so that for any
ε > 0 the mean-gradient satisfies ‖gε(x)−∇f(x)‖ ≤ κgε for all x ∈ Ω.
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Explicit Gradient Learning: EGL vs IGL
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Figure 3: Comparing indirect gradient learning and explicit gradient learning for 4 typical functions:
(a) parabolic; (b) piecewise linear; (c) multiple local minima; (d) step function.
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Explicit Gradient Learning: EGL vs IGL

(a)
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Figure 4: Visualizing EGL and IGL with di�erent ε for various 2D problems from COCO test suite.

gε(x) = arg min
g∈Rn

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ
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Explicit Gradient Learning: Design

Learning the mean-gradient is done by minimizing the Monte-Carlo approximation of the
Mean-Gradient:

1. Sample set of pairs of observations Dk = {(xi, yi)}mi=1 s.t. xi ∈ Vε(xk) where xk is a
candidate solution.

2. Minimize the loss function

Lk,ε(θ) =
m∑
i=1

∑
xj∈Vε(xi)

|(xj − xi) · gθ(xi)− yj + yi|2 (3)

gε(x) = arg min
g∈Rn

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ

18 30



Explicit Gradient Learning: Design

Learning the mean-gradient is done by minimizing the Monte-Carlo approximation of the
Mean-Gradient:

1. Sample set of pairs of observations Dk = {(xi, yi)}mi=1 s.t. xi ∈ Vε(xk) where xk is a
candidate solution.

2. Minimize the loss function

Lk,ε(θ) =
m∑
i=1

∑
xj∈Vε(xi)

|(xj − xi) · gθ(xi)− yj + yi|2 (3)

gε(x) = arg min
g∈Rn

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ

18 30



Explicit Gradient Learning: Design

Learning the mean-gradient is done by minimizing the Monte-Carlo approximation of the
Mean-Gradient:

1. Sample set of pairs of observations Dk = {(xi, yi)}mi=1 s.t. xi ∈ Vε(xk) where xk is a
candidate solution.

2. Minimize the loss function

Lk,ε(θ) =

m∑
i=1

∑
xj∈Vε(xi)

|(xj − xi) · gθ(xi)− yj + yi|2 (3)

gε(x) = arg min
g∈Rn

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ

18 30



Explicit Gradient Learning: Design

Learning the mean-gradient is done by minimizing the Monte-Carlo approximation of the
Mean-Gradient:

1. Sample set of pairs of observations Dk = {(xi, yi)}mi=1 s.t. xi ∈ Vε(xk) where xk is a
candidate solution.

2. Minimize the loss function

Lk,ε(θ) =

m∑
i=1

∑
xj∈Vε(xi)

|(xj − xi) · gθ(xi)− yj + yi|2 (4)

Theorem + Corollary

Given a proper set of samples (denoted as a poised set), any Lipschitz continuous Neural
Network that optimizes Eq. (4) is a a controllably accurate model.

‖∇f(x)− gθ(x)‖ ≤ κgε
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Explicit Gradient Learning: Convergence

Proposition (Bertsekas (1999), Proposition 1.2.3)

Suppose f : Rn → R is κf -smooth and bounded below. Let xk+1 = xk − α∇f(xk) and

α ≤ 1
κf

. Then ‖∇f(xk)‖
k→∞−−−→ 0.

We prove that EGL converges to a stationary point and to the global optimum if the problem
is convex.

Convergence of EGL

Suppose a controllable mean-gradient model gε with error constant κg , the gradient descent

iteration xk+1 = xk − αkgεk(xk) with αk s.t. 5εk
‖∇f(xk)‖ ≤ αk ≤ min

(
1
κg
, 1
κf

)
guarantees:

1. Monotonically decreasing steps s.t. f(xk+1) ≤ f(xk)− 2.25 ε
2

α .

2. ‖∇f(xk)‖
k→∞−−−→ 0 for a proper choice of εk.
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Explicit Gradient Learning: Convergent Algorithm

Algorithm 1: Convergent EGL
Input: x0, α, ε, γα < 1, γε < 1, ε̄
k = 0
while ε ≤ ε̄ do

Build Model:
Collect data {(xi, yi)}m1 , xi ∈ Vε(xk)

Learn a local model gε(xk)

Gradient Descent:
xk+1 ← xk − αgε(xk)
if f(xk+1) > f(xk)− 2.25 ε

2

α then
α← γαα
ε← γαγεε

k ← k + 1
return xk
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Evaluation In the COCO Test Suite

2 20

2 17

2 14

2 11

2 8

2 5

2 2

5: Linear slope

4 2 0 2 4

4

2

0

2

4

0
20
40
60
80
100

4 2 0 2 4
10 5

10 4

10 3

10 2

10 1

lo
g 

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 20

2 17

2 14

2 11

2 8

2 5

2 2

6: Attractive sector

4 2 0 2 4

4

2

0

2

4

250000
500000
750000
1000000
1250000
1500000
1750000

4 2 0 2 4

10 8

10 6

10 4

10 2

100

lo
g 

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 18

2 15

2 12

2 9

2 6

2 3

7: Step-ellipsoid

4 2 0 2 4

4

2

0

2

4

500
1000
1500
2000

4 2 0 2 4

10 6

10 5

10 4

10 3

10 2

10 1

lo
g 

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 15

2 13

2 11

2 9

2 7

2 5

2 3

2 1

8: Rosenbrock original

4 2 0 2 4

4

2

0

2

4

25000
50000
75000
100000
125000
150000

4 2 0 2 4

10 7

10 6

10 5

10 4

10 3

10 2

10 1

lo
g 

vi
ew

0.2

0.4

0.6

0.8

f 1
D

22 30



Evaluation In the COCO Test Suite
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19: Griewank-Rosenbrock F8F2

4 2 0 2 4

4

2

0

2

4

100
0

100
200
300
400
500
600

4 2 0 2 4

10 4

10 3

10 2

10 1

lo
g 

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 13

2 11

2 9

2 7

2 5

2 3

2 1

20: Schwefel x*sin(x)
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Evaluation In the COCO Test Suite
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Figure 5: Comparing the success rate for a budget C = 150 · 103.
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Figure 6: The scaled distance ∆ytbest as a function of t ∈ [1, .., C] for: (a) EGL and baselines on 40D,
(b) dynamic mapping ablation test, (c) Di�erent m samples on the 784D set.

24 30



Evaluation In the COCO Test Suite

2 3 5 10 20 40 784
problem dimension

0%

20%

40%

60%

80%

su
cc

es
s r

at
e

Nelder Mead
SLSQP
POWELL
CG
COBYLA
BFGS
CMA-ES
IGL
EGL

Figure 5: Comparing the success rate for a budget C = 150 · 103.

20 24 28 212 216

t
(a)

2 7

2 5

2 3

2 1

yt be
st

Nelder Mead
SLSQP
POWELL
CG
COBYLA
BFGS
CMA-ES
IGL
EGL

210 212 214 216

t
(b)

FC
FC_OM
FC_TR
FC_TR_OM
SPLINE

210 212 214 216

t
(c)

CG
CMA-ES
EGL_64
EGL_800
IGL_64
IGL_800

50K 100K 150K
t

(d)

-30%

-20%

-10%

0%

10%

20%

RB1_P0
RB1_P1E-1
RB1_P1E-2
RB4_P0
RB16_P0

Figure 6: The scaled distance ∆ytbest as a function of t ∈ [1, .., C] for: (a) EGL and baselines on 40D,
(b) dynamic mapping ablation test, (c) Di�erent m samples on the 784D set.

24 30



Searching the Latent Space of Generative Models

fal(z) = λaLa(G(z)) + λlLl(G(z)) + λg tanh(D(G(z)))
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Searching the Latent Space of Generative Models
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Searching the Latent Space of Generative Models
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Searching the Latent Space of Generative Models

Female
Young
Wavy

Attractive
Wearing_Lipstick
Heavy_Makeup

Female
Young
Blond

Attractive
Narrow_Eyes

Heavy_Makeup

Female
Young

Wearing_Lipstick
Wearing_Hat

Heavy_Makeup

Female
Young

BlondWavy
High_Cheekbones

Pointy_Nose
Wearing_Lipstick

Female
Young

BlondWavyReceding
Heavy_Makeup

Wearing_Lipstick

Male
Mature

High_Cheekbones
Big_Nose
Attractive

Male
Mature

WavyBrown
Goatee
Chubby

Sideburns

Male
Mature
Gray

Mustache
High_Cheekbones

Double_Chin

Male
Young

Mustache
High_Cheekbones
Bushy_Eyebrows

Female
Young
Wavy

Wearing_Lipstick
Heavy_Makeup

Attractive

Female
Young

WavyBlack
Wearing_Lipstick

Attractive
Heavy_Makeup

Female
Young
Wavy

Bushy_Eyebrows
Heavy_Makeup

Attractive

EGL

IGL

Target

28 30



Summary

EGL is a model-based and derivative based BBO method.

EGL can optimize non-convex and noisy functions.

EGL converges to a local minimum.

EGL outperforms existing methods both in a synthetic test-suite and real-world
optimization application.
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Explicit Gradient Learning (EGL)

Thank you for your a�ention
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