# Interpretations are useful: penalizing explanations to align neural networks with prior knowledge



overview

### datasets are biased

- NNs learn from large datasets
- often biased
- we sometimes know the bias

#### Benign



**Cancerous** 







#### augmenting the loss function





#### Explanation - Prior knowledge

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \mathcal{L}\left(f_{\theta}(X), y\right) + \lambda \mathcal{L}_{\exp}\left(\exp l_{\theta}(X), \exp l_{X}\right)$$

#### using our method improves accuracy



details

### training with biased data

#### Benign











#### © 90% accurate

Input Layer ∈ ℝ<sup>9</sup>

Hidden Layer ∈ ℝ<sup>6</sup>

Output Layer  $\in \mathbb{R}^1$ 

#### what did the network learn?

#### **Benign**









## We know the bias (sometimes)

**Gender is not important for job applications!** 

Race shouldn't determine jail time!

**Rulers aren't cancerous!** 

Band aids don't protect against cancer!

# our method

#### augmenting the loss function

**Prediction — True label** 



#### augmenting the loss function



#### Contextual Decomposition Explanation Penalty

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \mathcal{L}\left(f_{\theta}(X), y\right) + \lambda \mathcal{L}_{\exp}\left(\exp l_{\theta}(X), \exp l_{X}\right)$$

#### any differentiable explanation method works

we used contextual decomposition (Singh 2019) captures interactions computationally lighter

## Contextual Decomposition (Singh 2019)

• requires partition of input 
$$\{x_j\}_{j\in S}, \{x_i\}_{i\notin S}$$

iteratively forward-pass both partitions

$$g^{CD}(x) = g_L^{CD}(g_{L-1}^{CD}(...(g_2^{CD}(g_1^{CD}(x))))))$$

output contribution of both partitions

$$g^{CD}(x) = (\beta(x), \gamma(x))$$

results

## skin cancer (ISIC)



RRR

**CDEP** 

#### explanations focus more on skin

#### mnist variants



|            | VANILLA       | CDEP                             | RRR           | EXPECTED GRADIENTS |
|------------|---------------|----------------------------------|---------------|--------------------|
| COLORMNIST | $0.2 \pm 0.2$ | $\textbf{31.0} \pm \textbf{2.3}$ | $0.2 \pm 0.1$ | $10.0 \pm 0.1$     |

# contributions

### contributions

# CDEP uses explainability methods to regularize an NN

used to incorporate prior knowledge into neural networks





usable with more complex knowledge than previous methods