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Main Contributions

- An approach that achieves state-of-the-art on label shift adaptation
- Scales to datasets with high-dimensional inputs

- Does not require model retraining

- Combines Max Likelihood with specific types of  calibration.
- Calibration with Temp. Scaling (TS) was insufficient (& sometimes harmful!)

- Achieved state-of-the-art with extensions of  TS (one of  which we propose) 
that correct for systematic bias



Formal Definition of  Label Shift
Let:
- 𝑦 denote our labels (whether or not person has disease)
- 𝒙 denote the observed symptoms
- 𝑝(𝒙, 𝑦) denote joint distribution (𝒙, 𝑦) at beginning of  outbreak (“source domain”)
- 𝑞(𝒙, 𝑦) denote joint distribution at widespread stage (“target domain”), when we don’t know 

labels
- Goal: adapt source-domain classifier that predicts 𝑝(𝑦|𝒙) to instead predict 𝑞(𝑦|𝒙) for target 

domain

Core assumption: disease has same symptoms irrespective of  outbreak stage, i.e. 𝑝 𝒙 𝑦 = 𝑞(𝒙|𝑦).
- Thus, difference between source & target domain is exclusively caused by shift in label 

proportions 𝑝(𝑦) and 𝑞(𝑦). Formally, 𝑞 𝒙, 𝑦 = 𝑝 𝒙|𝑦 𝑞 𝑦
- Also called prior probability shift (Amos, 2008), corresponds to “anti-causal learning” i.e. 

predicting cause 𝑦 from effects 𝒙 (Schloelkopf, 2012).
- Anti-causal learning is appropriate here because diseases status 𝑦 cause the symptoms 𝒙.



Estimating 𝑞 𝑦 𝒙 with Bayes’ Rule
- Although 𝑝(𝒙|𝑦) is preserved, computing it is hard when 𝒙 is high-dimensional.
- Much easier to estimate 𝑝(𝑦|𝒙) and 𝑝(𝑦) from the source domain, as 𝑦 is lower-dimensional.
- If  we know 𝑞(𝑦), we can retrieve 𝑞 𝑦 𝑥 without ever estimating 𝑝 𝒙 𝑦 using Bayes’ Rule 

(first shown in Saerens et al., 2002): 

We first write 𝑞 𝑦 𝒙 = !(#,𝒙)
!(𝒙)

= !(𝒙|#)!(#)
∑!∗ !(𝒙|#

∗)!(#∗)
(terms in red are not explicitly known)

Substituting 𝑞 𝒙 𝑦 = 𝑝(𝒙|𝑦) (label shift assumption), we have 𝑞 𝑦 𝒙 = )(𝒙|#)!(#)
∑!∗ )(𝒙|#∗)!(#∗)

Through Bayes’ rule, observe that 𝑝 𝒙 𝑦 = )(#|𝒙))(𝒙)
)(#)

Substituting, we get 𝑞 𝑦 𝒙 =
#(!|𝒙)#(𝒙)

#(!) !(#)

∑!
#(!|𝒙)#(𝒙)

#(!) !(#)

𝑝(𝑥) cancels out, giving 𝑞 𝑦 𝒙 = 
#(!|𝒙)
#(!) !(#)

∑!
#(!|𝒙)
#(!) !(#)

Reminders:
- 𝒙 denotes features (e.g. symptoms)
- 𝑦 denotes labels (e.g. disease status)
- 𝑝 indicates source-domain (labels known)
- 𝑞 indicates target domain (labels unknown)
- Label shift assumes 𝑞 𝒙 𝑦 = 𝑝(𝒙|𝑦)
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told 𝑞(𝑦), we can find 𝑞(𝑦|𝒙) using Bayes’ rule



A Simple Iterative Approach to Label Shift…
In practice, we are not told 𝑞(𝑦) – how can we estimate it?
- Could use 𝑝(𝑦|𝒙) to predict on test set & average predictions to estimate 𝑞 𝑦
- Could then use 𝑞(𝑦) to update 𝑝(𝑦|𝒙), and repeat the process until convergence!
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Iterative approach ßà Maximum Likelihood
- The simple iterative approach is a valid EM algorithm that optimizes the log likelihood 
∑! log∑" 𝑞 𝒙! 𝑦 𝑞(𝑦) w.r.t. parameters q(y). First shown in Saerens et al. (2002).

- Note: Saerens et al. (2002) has been incorrectly described in several recent papers as 
being unable to scale to high-dimensional 𝒙 because it requires estimating 𝑝 𝒙 𝑦 . The 
algorithm only requires 𝑝(𝑦|𝒙) and 𝑝(𝑦), and thus scales to high-dimensional 𝒙.

- In our paper, we further showed the optimization is concave; thus, EM converges to 
the global optimum , and one can use any convex optimizer for Max. Likelihood

Reminders:
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Recent Work on Label Shift Adaptation
- Prior work (Lipton et al., ICML 2018) proposed Black Box Shift Estimation (BBSE) to 

estimate ⁄𝑞 𝑦 𝑝 𝑦 . BBSE builds a confusion matrix using held-out data & does not 
assume the predicted 𝑝(𝑦|𝒙) are calibrated.

- Azizzadenesheli et al., ICLR 2019 improved on BBSE with Regularized Learning under 
Label Shifts (RLLS). Also leverages a confusion matrix built on held-out data.

Reminders:
- 𝒙 denotes features (e.g. symptoms)
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- If we estimate 𝑝(𝑦|𝒙), 𝑝(𝑦) from source data & are 

told 𝑞(𝑦), we can find 𝑞(𝑦|𝒙) using Bayes’ rule
- Given accurate 𝑝(𝑦|𝒙), 𝑝 𝑦 , we can find 𝑞(𝑦)

through Maximum Likelihood (including EM)

- Major drawback: both BBSE and RLLS require 
model retraining using ⁄𝑞 𝑦 𝑝 𝑦 as the 
importance weights. Importance weighting does not 
work as well as expected with deep neural networks 
(Byrd & Lipton, 2019)

- Neither BBSE nor RLLS were benchmarked against 
Max Likelihood (which does not require retraining)



CIFAR10 benchmarking
- Evaluation metric: mean squared error in estimate of  ⁄𝑞 𝑦 𝑝 𝑦

- Dirichlet shift (𝛼 = 0.1) simulated over 10 trials for each of  10 different trained 
models (100 trials in total). 𝑁=2000 samples were used in validation & test sets (results 
are qualitatively similar for different 𝛼 and 𝑁 as well).



Problem: Miscalibration
- Bayes’ rule for deriving 𝑞(𝑦|𝒙) given 𝑞(𝑦) assumes we have accurate 𝑝(𝑦|𝒙). In 

practice, this is often not the case because 𝑝(𝑦|𝒙) from modern neural 
network is typically mis-calibrated (Guo et al., 2017)

- (Loosely) calibration means: if  model says 𝑝 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝒙 = 0.5, then there is 
actually a 50% chance that the person has the disease

- Even when modern neural networks rank the predictions correctly, the 
probabilities themselves may be very inaccurate (e.g. 𝑝 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝒙 may be 0.9 
when it should be 0.5) Reminders:

- 𝒙 denotes features (e.g. symptoms)
- 𝑦 denotes labels (e.g. disease status)
- 𝑝 indicates source-domain (labels known)
- 𝑞 indicates target domain (labels unknown)
- Label shift assumes 𝑞 𝒙 𝑦 = 𝑝(𝒙|𝑦)
- If we estimate 𝑝(𝑦|𝒙), 𝑝(𝑦) from source data & are told 
𝑞(𝑦), we can find 𝑞(𝑦|𝒙) using Bayes’ rule

- Given accurate 𝑝(𝑦|𝒙), 𝑝 𝑦 , we can find 𝑞(𝑦) through 
Maximum Likelihood (including EM)



Getting Max. Likelihood Estimation to Work…
- Both BBSE and RLLS require a held-out set on which to find the confusion matrix

- We reasoned: if  major barrier to Max. Likelihood is calibration requirement, why not 
use the held-out set to calibrate the predictions prior to doing the optimization?

- Guo et al. (ICML 2017) recommended Temperature Scaling (TS), where softmax logits 
𝑧 𝒙! are scaled by “temperature” 𝑇 to optimize cross-entropy on validation set:

𝑝 𝑦# 𝒙! =
𝑒$ 𝒙

*
+/'

∑( 𝑒
$ 𝒙* ,/'



Trying Temperature Scaling…
- Evaluation metric: mean squared error in estimate of  ⁄𝑞 𝑦 𝑝 𝑦

- Dirichlet shift (𝛼 = 0.1) simulated over 10 trials for each of  10 different trained 
models (100 trials in total). 𝑁=2000 samples were used in validation & test sets (results 
are qualitatively similar for different 𝛼 and 𝑁 as well).
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- We observed systematic bias in 𝒑(𝒚) from Temperature Scaling. To fix, we devised a variant that 
included bias correction terms, called Bias-Corrected Temperature Scaling (BCTS): 

BCTS: 𝑝 𝑦# 𝒙! = )
- 𝒙*

+
. /0+

∑, )
- 𝒙* ,

. /0,



CIFAR10 benchmarking
- Evaluation metric: mean squared error in estimate of  ⁄𝑞 𝑦 𝑝 𝑦

- Dirichlet shift (𝛼 = 0.1) simulated over 10 trials for each of  10 different trained 
models (100 trials in total). 𝑁=2000 samples were used in validation & test sets (results 
are qualitatively similar for different 𝛼 and 𝑁 as well).



MNIST results
- Evaluation metric: mean squared error in estimate of  ⁄𝑞 𝑦 𝑝 𝑦

- Dirichlet shift (𝛼 = 0.1) simulated over 10 trials for each of  10 different trained 
models (100 trials in total). 𝑁=2000 samples were used in validation & test sets (results 
are qualitatively similar for different 𝛼 and 𝑁 as well).



CIFAR100 results
- Evaluation metric: mean squared error in estimate of  ⁄𝑞 𝑦 𝑝 𝑦

- Dirichlet shift (𝛼 = 0.1) simulated over 10 trials for each of  10 different trained 
models (100 trials in total). 𝑁=7000 samples were used in validation & test sets (results 
are qualitatively similar for different 𝛼 and 𝑁 as well).



Diabetic Retinopathy Detection
- Class proportion shift; target domain set to have 50% healthy instead of  original 73% 

healthy. 𝑁=1500 samples were used in validation & test sets  (results are qualitatively 
similar for different % and 𝑁 as well).



Conclusion
- Maximum Likelihood + specific types of  calibration gives state-of-the-art performance at 

domain adaptation to label shift

- Popular calibration approach of  Temperature Scaling (TS) was not good enough
- Adding terms to minimize systematic bias was important.

- Alongside BCTS, we found Vector Scaling (VS), which also has bias-correction, works well.

- VS was introduced alongside TS in Guo et al. 2017, but did not outperform TS according to the ECE 
metric they used. Consistent with arguments that the ECE metric used in Guo et al. (which considers only 
the most confidently-predicted class) may not be best metric (Vaicenavicius et al., 2019).

- Other calibration forms like Matrix-ODIR (Kull et al., NeurIPS 2019) may also work well

- Main results independently confirmed by Garg, Wu, Balakrishnan & Lipton (2020) 
https://arxiv.org/abs/2003.07554, who studied why our ML+BCTS works well. Quote:

Garg et al. paper also includes theoretical analysis of  impact of  miscalibration error.

https://arxiv.org/abs/2003.07554

