

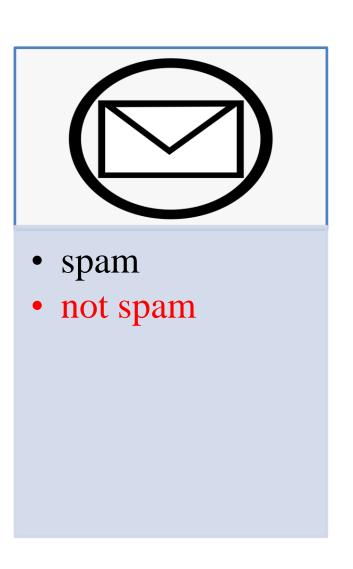
Pretrained Generalized Autoregressive Model with Adaptive Probabilistic Label Clusters for Extreme Multi-label Text Classification

Hui Ye¹, Zhiyu Chen¹, Da-Han Wang², Brian D. Davison¹

ICML 2020

Extreme Multi-label Text Classification

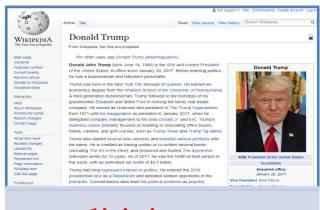
Binary Classification



Multi-class Classification



Multi-label Classification



- politician
- businesspeople
- musician
- engineer
- scientist
- . . .

How to deal with extreme outputs efficiently

Tree-based approaches

• Train a hierarchical tree structure for fast training and prediction

Embedding-based approaches

Project high-dimensional label space into low-dimensional one

Sampling approaches

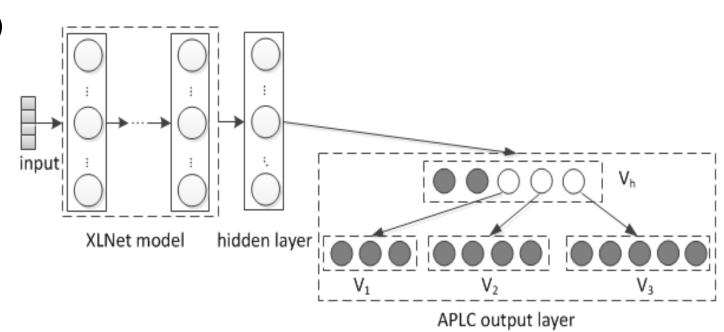
• Sample a small percentage of negative labels

Cluster-based approaches

• Partition the label set into several clusters

Model Architecture

- Backbone model: XLNet (Dai et al., 2019)
 - Generalized autoregressive pretraining language model
 - Fine-tune the model on downstream tasks



- Hidden layer
 - Between XLNet and APLC output layer
 - Bottleneck layer: reduce 768 to 512, 256 et al.
- Output layer: Adaptive Probabilistic Label Clusters (APLC)

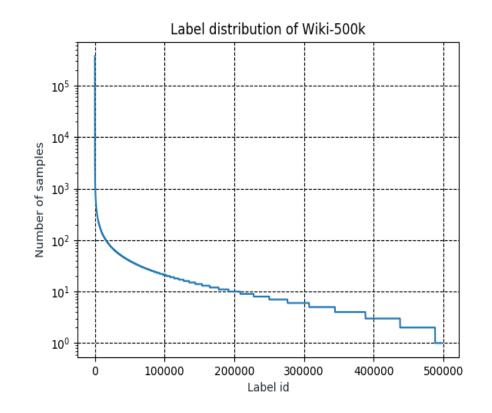
Adaptive Probabilistic Label Clusters

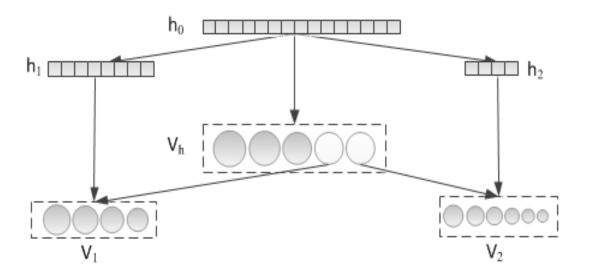
Motivation: Zipf's Law

- Most of the probability mass is covered by only a small fraction of the label set
- i.e. 25% labels cover 75% probability mass

Architecture

- Most frequent labels in head cluster, infrequent labels in tail clusters
- Keep the head cluster as a short-list in the root node
- Decreasing dimension of hidden state: $q = \frac{d_i}{d_{i-1}}, q \ge 1$





Adaptive Probabilistic Label Clusters

Model size:

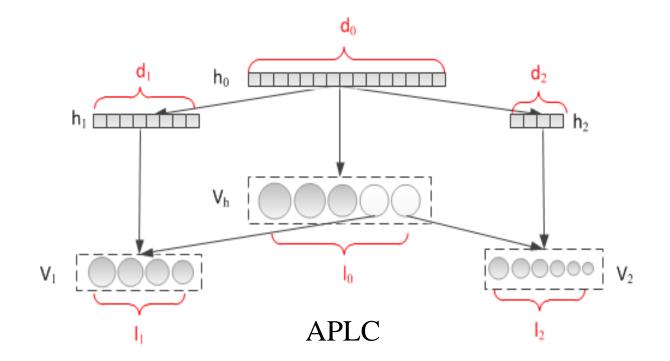
- Partition of the label set: v_h, v₁, v₂
- Decay factor $q = \frac{d_i}{d_{i-1}}, q \ge 1$

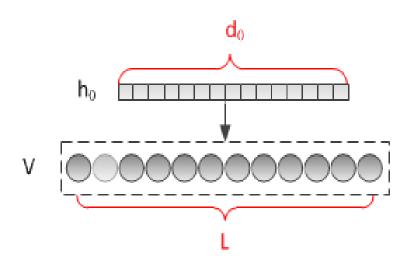
$$N_{par} \approx dl_h + \sum_{i=1}^{K} \frac{d}{q^i} l_i = d \sum_{i=0}^{K} \frac{l_i}{q^i}$$
 (7)

How the model size is reduced

• i.e. 3 clusters, q = 2,

$$\underbrace{(d*l_0 + \frac{d}{2}*l_1 + \frac{d}{4}*l_2)}_{\text{APLC}} < \underbrace{(d*l_0 + d*l_1 + d*l_2)}_{\text{Linear Output}} = d*L$$





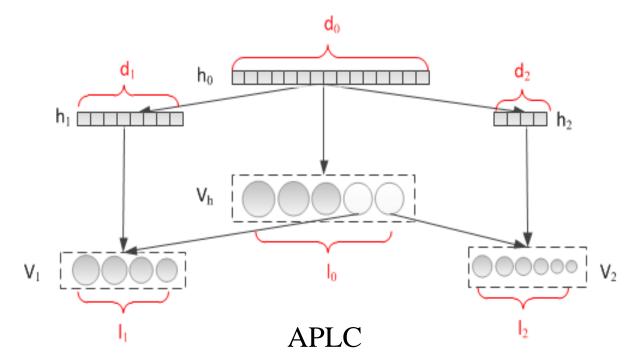
Linear output

Adaptive Probabilistic Label Clusters

• Computational cost:

• Model visits cluster v_i with probability p_i

$$C = O(N_b d(l_h + \sum_{i=1}^{K} p_i \frac{l_i}{q^i}))$$
 (12)



How the computational cost is reduced

• i.e. 3 clusters, $(x_i, y_i) = (x_i, [y_i^1, y_i^2, y_i^3])$ has 3 positive labels

Table shows the clusters that the model visits

		Linear Structure	APLC	
Case 1	$y_i^1, y_i^2, y_i^3 \in V_h$	V_h, V_1, V_2	V_h	best
Case 2	$y_{i}^{1}, y_{i}^{2} \in V_{h}, y_{i}^{3} \in V_{1}$	V_h, V_1, V_2	V_h, V_1	
Case 3	$y_{i}^{1} \in V_{h}, y_{i}^{2} \in V_{1}, y_{i}^{3} \in V_{2}$	V_h, V_1, V_2	V_h, V_1, V_2	worst
•••	•••	•••	•••	

Datasets

Table 1. Statistics of datasets. N_{train} is the number of training samples, N_{test} is the number of test samples, D is the dimension of the feature vector, L is the cardinality of the label set, L is the average number of labels per sample, L is the average samples per label, \overline{W}_{train} is the average number of words per training sample and \overline{W}_{test} is the average number of words per test sample.

Dataset	N_{train}	N_{test}	D	L	\bar{L}	Â	\overline{W}_{train}	$\overline{\overline{W}}_{test}$
EURLex-4k	15,449	3,865	186,104	3,956	5.30	20.79	1,248.58	1,230.40
AmazonCat-13k	1,186,239	306,782	203,882	13,330	5.04	448.57	246.61	245.98
Wiki10-31k	14,146	6,616	101,938	30,938	18.64	8.52	2,484.30	2,425.45
Wiki-500k	1,779,881	769,421	2,381,304	501,008	4.75	16.86	808.66	808.56
Amazon-670k	490,449	153,025	135,909	670,091	5.45	3.99	247.33	241.22

Implementation details of APLC

Table 2. Implementation details of APLC. d_h is the dimension of the input hidden state, q is the factor by which the dimension of hidden state for the tail cluster decreases, N_{cls} is the number of clusters and P_{num} is the proportion for which the number of labels in each cluster accounts.

Dataset	d_h	q	N_{cls}	P_{num}
EURLex-4k	768	2	2	0.5, 0.5
AmazonCat-13k	768	2	2	0.5, 0.5
Wiki10-31k	768	2	2	0.5, 0.5
Wiki-500k	768	2	3	0.33, 0.33, 0.34
Amazon-670k	512	2	4	0.25, 0.25, 0.25, 0.25

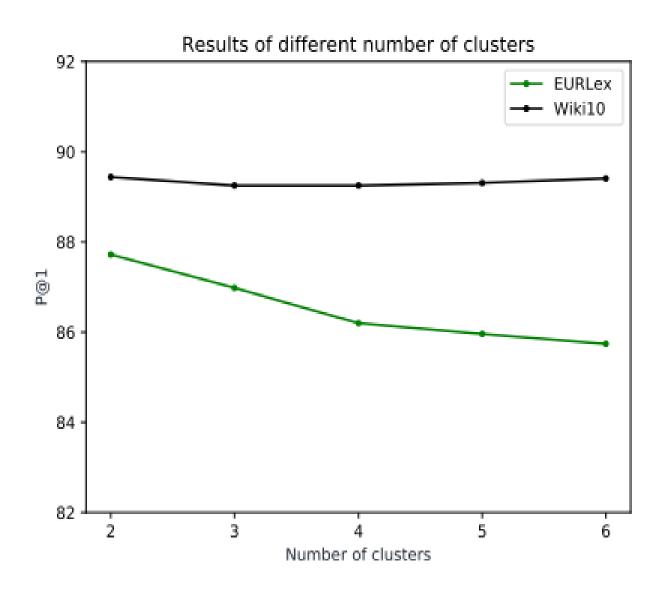
Results

• Metric: Precision at 1, 3, 5

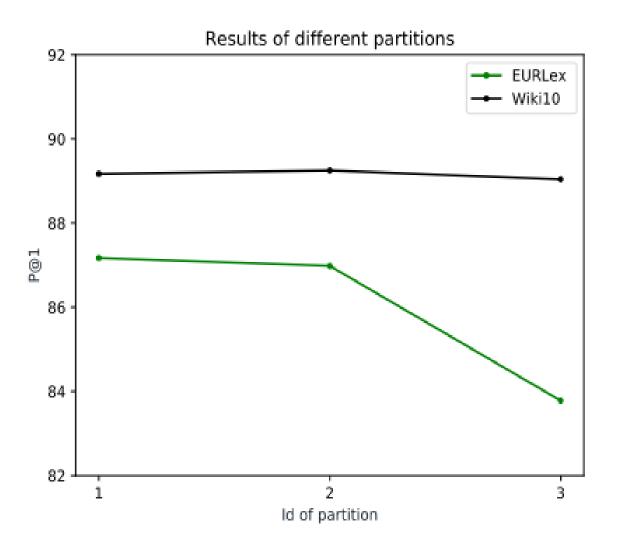
Dataset		SLEEC	AnnexML	DisMEC	PfastreXML	Parabel	Bonsai	XML-CNN	AttentionXML	APLC-XLNe
	P@1	79.26	79.66	82.40	75.45	81.73	83.00	76.38	87.14	87.72
EURLex-4k	P@3	64.30	64.94	68.50	62.70	68.78	69.70	62.81	75.18	74.56
	P@5	52.33	53.52	57.70	52.51	57.44	58.40	51.41	62.58	62.28
	P@1	90.53	93.55	93.40	91.75	93.03	92.98	93.26	92.62	94.56
AmazonCat-13k	P@3	76.33	78.38	79.10	77.97	79.16	79.13	77.06	77.56	79.82
	P@5	61.52	63.32	64.10	63.68	64.52	64.46	61.40	62.74	64.60
	P@1	85.88	86.50	85.20	83.57	84.31	84.70	84.06	86.04	89.44
Wiki10-31k	P@3	72.98	74.28	74.60	68.61	72.57	73.60	73.96	77.54	78.93
	P@5	62.70	64.19	65.90	59.10	63.39	64.70	64.11	68.48	69.73
	P@1	53.60	63.86	70.20	56.25	68.52	69.20	59.85	72.62	72.83
Wiki-500k	P@3	34.51	40.66	50.60	37.32	49.42	49.80	39.28	51.02	50.50
	P@5	25.85	29.79	39.70	28.16	38.55	38.80	29.81	39.41	38.55
	P@1	35.05	42.08	44.70	39.46	44.89	45.50	35.39	45.45	43.46
Amazon-670k	P@3	31.25	36.65	39.70	35.81	39.80	40.30	31.93	40.63	38.82
	P@5	28.56	32.76	36.10	33.05	36.00	36.50	29.32	36.92	35.32

Ablation study

• Impact of the number of clusters



Impact of the partition of the label set
(0.7,0.2,0.1), (0.33,0.33,0.34) and (0.1,0.2,0.7)
for (P_h, P₁, P₂)



Summary

- Proposed a novel deep learning approach for the XMTC problem
- Proposed APLC to deal with extreme labels efficiently
- Carried out theoretical analysis on APLC
 - Model size
 - Computational cost