Inertial Block Proximal Methods for Non-Convex Non-Smooth Optimization

L. T. K. Hien ${ }^{1} \quad$ N. Gillis ${ }^{1} \quad$ P. Patrinos ${ }^{2}$
${ }^{1}$ University of Mons
${ }^{2} \mathrm{KU}$ Leuven

The 37th International Conference on Machine Learning ICML 2020

Overview

(1) Problem set up

- Motivation
- Block Coordinate Descent Methods
(2) The proposed methods: IBP and IBPG
- Extension to Bregman divergence
(3) Convergence Analysis
- Subsequential convergence
- Global convergence
(4) Application to NMF
(5) Preliminary numerical results

Problem set up

We consider the following non-smooth non-convex optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{E}} F(x), \quad \text { where } F(x):=f(x)+g(x) \tag{1}
\end{equation*}
$$

and

- x is partitioned into s blocks/groups of variables:
$x=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{E}=\mathbb{E}_{1} \times \ldots \times \mathbb{E}_{s}$ with $\mathbb{E}_{i}, i=1, \ldots, s$, being finite dimensional real linear spaces equipped with the norm $\|\cdot\|_{(i)}$ and the inner product $\langle\cdot, \cdot\rangle_{(i)}$,
- $f: \mathbb{E} \rightarrow \mathbb{R}$ is a continuous but possibly non-smooth non-convex function, and
- $g(x)=\sum_{i=1}^{s} g_{i}\left(x_{i}\right)$ with $g_{i}: \mathbb{E}_{i} \rightarrow \mathbb{R} \cup\{+\infty\}$ for $i=1, \ldots, s$ are proper and lower semi-continuous functions.

Nonnegative matrix factorization - A motivation

NMF

Given $X \in \mathbb{R}_{+}^{\mathbf{m} \times \mathbf{n}}$ and the integer $\mathbf{r}<\min (\mathbf{m}, \mathbf{n})$, solve

$$
\min _{U \geq 0, V \geq 0} \frac{1}{2}\|X-U V\|_{F}^{2} \text { such that } U \in \mathbb{R}_{+}^{\mathbf{m} \times \mathbf{r}} \text { and } V \in \mathbb{R}_{+}^{\mathbf{r} \times \mathbf{n}} .
$$

NMF is a key problem in data analysis and machine learning with applications in

- image processing,
- document classification,
- hyperspectral unmixing,
- audio source separation.

Nonnegative matrix factorization - A motivation

NMF

Given $X \in \mathbb{R}_{+}^{\mathbf{m} \times \mathbf{n}}$ and the integer $\mathbf{r}<\min (\mathbf{m}, \mathbf{n})$, solve

$$
\min _{U \geq 0, V \geq 0} \frac{1}{2}\|X-U V\|_{F}^{2} \text { such that } U \in \mathbb{R}_{+}^{\mathbf{m} \times \mathbf{r}} \text { and } V \in \mathbb{R}_{+}^{\mathbf{r} \times \mathbf{n}} .
$$

Let $f(U, V)=\frac{1}{2}\|X-U V\|_{F}^{2}$, $g_{1}(U)=\mathbb{I}_{\mathbb{R}_{+}^{m \times r}}(U)$, and $g_{2}(V)=\mathbb{I}_{\mathbb{R}_{+}^{\times \times \mathbf{n}}}(V)$.
NMF is rewritten as
$\min _{U, V} f(U, V)+g_{1}(U)+g_{2}(V)$.

Let $f\left(U_{: i}, V_{i:}\right)=\frac{1}{2}\left\|X-\sum_{i=1}^{r} U_{: i} V_{i:}\right\|_{F}^{2}$,
$g_{i}\left(U_{: i}\right)=\mathbb{I}_{\mathbb{R}_{+}^{m}}\left(U_{: i}\right), i=1, \ldots, \mathbf{r}$, and $g_{i+\mathbf{r}}\left(V_{i:}\right)=\mathbb{I}_{\mathbb{R}_{+}^{\mathbf{n}}}\left(V_{i:}\right), i=1, \ldots, \mathbf{r}$.
NMF is rewritten as
$\min _{U_{: i}, V_{i:}} f\left(U_{: i}, V_{i:}\right)+\sum_{i=1}^{\mathbf{r}} g_{i}\left(U_{: i}\right)+\sum_{i=r+1}^{2 r} g_{i}\left(V_{i:}\right)$.

Non-negative approximate canonical polyadic decomposition (NCPD)

We consider the following NCPD problem: given a non-negative tensor $T \in \mathbb{R}^{I_{1} \times I_{2} \times \ldots \times I_{N}}$ and a specified order \mathbf{r}, solve

$$
\begin{equation*}
\min _{X^{(1)}, \ldots, X^{(N)}} f:=\frac{1}{2}\left\|T-X^{(1)} \circ \ldots \circ X^{(N)}\right\|_{F}^{2} \tag{2}
\end{equation*}
$$

such that $\quad X^{(n)} \in \mathbb{R}_{+}^{l_{n} \times \mathbf{r}}, n=1, \ldots, N$,
where the Frobenius norm of a tensor $T \in \mathbb{R}^{I_{1} \times I_{2} \times \ldots \times I_{N}}$ is defined as $\|T\|_{F}=\sqrt{\sum_{i_{1}, \ldots, i_{N}} T_{i_{1} i_{2} \ldots i_{N}}^{2}}$, and the tensor product $X=X^{(1)} \circ \ldots \circ X^{(N)}$ is defined as $X_{i_{1} i_{2} \ldots i_{N}}=\sum_{j=1}^{r} X_{i_{1} j}^{(1)} X_{i_{2} j}^{(2)} \ldots X_{i_{N} j}^{(N)}$, for $i_{n} \in\left\{1, \ldots, I_{n}\right\}$, $n=1, \ldots, N$. Here $X_{i j}^{(n)}$ is the (i, j)-th element of $X^{(n)}$. Let $g_{i}\left(X^{(i)}\right)=\mathbb{I}_{\mathbb{R}_{+}^{i^{\prime} \times r}}\left(X^{(i)}\right)$. NCPD is rewritten as

$$
\min _{X^{(1)}, \ldots, X^{(N)}} f\left(X^{(1)}, \ldots, X^{(N)}\right)+\sum_{i=1}^{N} g_{i}\left(X^{(i)}\right)
$$

Block Coordinate Descent Methods

1: Initialize: Choosing initial point $x^{(0)}$ and other parameters.
2: for $k=1, \ldots$ do
3: \quad for $i=1, \ldots, s$ do
4: \quad Fix the latest values of the blocks $j \neq i$:

$$
\left(x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}, x_{i+1}^{(k-1)}, \ldots, x_{s}^{(k-1)}\right)
$$

5: Update block i to get

$$
\left(x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}^{(k)}, x_{i+1}^{(k-1)}, \ldots, x_{s}^{(k-1)}\right)
$$

6: end for
7: end for
Algorithm 1: General framework of BCD methods.

Block Coordinate Descent Methods

Denote $f_{i}^{(k)}\left(x_{i}\right):=f\left(x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}, x_{i+1}^{(k-1)}, \ldots, x_{s}^{(k-1)}\right)$.
(First order) BCD methods can typically be classified into three categories:
(1) Classical BCD methods update each block of variables as follows

$$
x_{i}^{(k)}=\underset{x_{i} \in \mathbb{E}_{i}}{\operatorname{argmin}} f_{i}^{(k)}\left(x_{i}\right)+g_{i}\left(x_{i}\right) .
$$

\oplus converge to a stationary point under suitable convexity assumptions.
\ominus fails to converge for some non-convex problems.

Block Coordinate Descent Methods

(2) Proximal BCD methods update each block of variables as follows

$$
x_{i}^{(k)}=\underset{x_{i} \in \mathbb{E}_{i}}{\operatorname{argmin}} f_{i}^{(k)}\left(x_{i}\right)+g_{i}\left(x_{i}\right)+\frac{1}{2 \beta_{i}^{(k)}}\left\|x_{i}-x_{i}^{(k-1)}\right\|^{2} .
$$

\oplus The authors in [1] established, for the first time, the convergence of $\left\{x^{(k)}\right\}$ to a critical point of F with non-convex setting and $s=2$.

[^0]
Block Coordinate Descent Methods

(3) Proximal gradient BCD methods update each block of variables as follows

$$
\begin{aligned}
& x_{i}^{(k)}=\underset{x_{i} \in \mathbb{E}_{i}}{\operatorname{argmin}}\left\langle\nabla f_{i}^{(k)}\left(x_{i}^{(k-1)}\right), x_{i}-x_{i}^{(k-1)}\right\rangle+g_{i}\left(x_{i}\right) \\
&+\frac{1}{2 \beta_{i}^{(k)}}\left\|x_{i}-x_{i}^{(k-1)}\right\|^{2} .
\end{aligned}
$$

When $g_{i}\left(x_{i}\right)=\mathbb{I}_{X_{i}}\left(x_{i}\right)$ and $\|\cdot\|$ is Frobenius norm, we have

$$
x_{i}^{(k)}=\operatorname{Proj}_{x_{i}}\left(x_{i}^{(k-1)}-\beta_{i}^{(k)} \nabla f_{i}^{(k)}\left(x_{i}^{(k-1)}\right)\right)
$$

\oplus In the general non-convex setting, Bolte et al in [2] proved the convergence of $\left\{x^{(k)}\right\}$ to a critical point of F when $s=2$.
[2] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1) : 459-494, Aug 2014.

Gradient descent method

When $\mathbb{E}=\mathbb{R}^{n}, s=1, g(x)=0$ and $\|\cdot\|$ is Frobenius norm, proximal gradient BCD amounts to gradient descent method for unconstrained optimization problem $\min _{x \in \mathbb{R}^{n}} f(x)$:

$$
x_{k+1}=x_{k}-\beta_{k} \nabla f\left(x_{k}\right) .
$$

Some remarks

- It is a descent method when β_{k} is appropriately chosen.
- In the convex setting, the method does not have the optimal convergence rate.

Acceleration by extrapolation

Heavy-ball method of Polyak [3]:

$$
x_{k+1}=x_{k}-\beta_{k} \nabla f\left(x_{k}\right)+\theta_{k}\left(x_{k}-x_{k-1}\right) .
$$

Accelerated gradient method of Nesterov [4]:

$$
\begin{aligned}
y_{k} & =x_{k}+\theta_{k}\left(x_{k}-x_{k-1}\right) \\
x_{k+1} & =y_{k}-\beta_{k} \nabla f\left(y_{k}\right)=x_{k}-\beta_{k} \nabla f\left(y_{k}\right)+\theta_{k}\left(x_{k}-x_{k-1}\right)
\end{aligned}
$$

Some remarks:

- they are not descent methods,
- in the convex setting, these methods are proved to achieve the optimal convergence rate.
[3] B. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4(5): 1-17, 1964.
[4] Y. Nesterov. A method of solving a convex programming problem with convergence rate $O\left(1 / k^{2}\right)$. Soviet Mathematics Doklady, 27(2), 1983.

Let's recall

(1) Classical BCD

$$
x_{i}^{(k)}=\underset{x_{i} \in \mathbb{E}_{i}}{\operatorname{argmin}} f_{i}^{(k)}\left(x_{i}\right)+g_{i}\left(x_{i}\right) .
$$

(2) Proximal BCD

$$
x_{i}^{(k)}=\underset{x_{i} \in \mathbb{E}_{i}}{\operatorname{argmin}} f_{i}^{(k)}\left(x_{i}\right)+g_{i}\left(x_{i}\right)+\frac{1}{2 \beta_{i}^{(k)}}\left\|x_{i}-x_{i}^{(k-1)}\right\|^{2}
$$

(3) Proximal gradient BCD

$$
x_{i}^{(k)}=\underset{x_{i} \in \mathbb{E}_{i}}{\operatorname{argmin}}\left\langle\nabla f_{i}^{(k)}\left(x_{i}^{(k-1)}\right), x_{i}\right\rangle+g_{i}\left(x_{i}\right)+\frac{1}{2 \beta_{i}^{(k)}}\left\|x_{i}-x_{i}^{(k-1)}\right\|^{2}
$$

The proposed methods: IBP and IBPG

```
Initialize: Choose \(\tilde{x}^{(0)}=\tilde{x}^{(-1)}\).
```

for $k=1, \ldots$ do
$x^{(k, 0)}=\tilde{x}^{(k-1)}$
for $j=1, \ldots, T_{k}$ do
Choose $i \in\{1, \ldots, s\}$. Let y_{i} be the value of the
i th block before it was updated to $x_{i}^{(k, j-1)}$.
Extrapolate

$$
\begin{equation*}
\hat{x}_{i}=x_{i}^{(k, j-1)}+\alpha_{i}^{(k, j)}\left(x_{i}^{(k, j-1)}-y_{i}\right) \tag{3}
\end{equation*}
$$

and compute

$$
x_{i}^{(k, j)}=\underset{x_{i}}{\operatorname{argmin}} F_{i}^{(k, j)}\left(x_{i}\right)+\frac{1}{2 \beta_{i}^{(k, j)}}\left\|x_{i}-\hat{x}_{i}\right\|^{2}
$$

$$
\begin{equation*}
\text { Let } x_{i^{\prime}}^{(k, j)}=x_{i^{\prime}}^{(k, j-1)} \text { for } i^{\prime} \neq i \tag{4}
\end{equation*}
$$

end for
Update $\tilde{x}^{(k)}=x^{\left(k, T_{k}\right)}$.
end for

Algorithm 2: IBP

```
Initialize: Choose \(\tilde{x}^{(0)}=\tilde{x}^{(-1)}\)
```

for $k=1, \ldots$ do
$x^{(k, 0)}=\tilde{x}^{(k-1)}$.
for $j=1, \ldots, T_{k}$ do
Choose $i \in\{1, \ldots, s\}$. Let y_{i} be the value of the
i th block before it was updated to $x_{i}^{(k, j-1)}$.
Extrapolate

$$
\begin{align*}
& \hat{x}_{i}=x_{i}^{(k, j-1)}+\alpha_{i}^{(k, j)}\left(x_{i}^{(k, j-1)}-y_{i}\right), \\
& \grave{x}_{i}=x_{i}^{(k, j-1)}+\gamma_{i}^{(k, j)}\left(x_{i}^{(k, j-1)}-y_{i}\right) \tag{5}
\end{align*}
$$

and compute

$$
\begin{array}{r}
x_{i}^{(k, j)}=\underset{x_{i}}{\operatorname{argmin}}\left\langle\nabla f_{i}^{(k, j)}\left(\grave{x}_{i}\right), x_{i}-x_{i}^{(k, j-1)}\right\rangle \\
 \tag{6}\\
+g_{i}\left(x_{i}\right)+\frac{1}{2 \beta_{i}^{(k, j)}}\left\|x_{i}-\hat{x}_{i}\right\|^{2}
\end{array}
$$

Let $x_{i^{\prime}}^{(k, j)}=x_{i^{\prime}}^{(k, j-1)}$ for $i^{\prime} \neq i$.
end for
Update $\tilde{x}^{(k)}=x^{\left(k, T_{k}\right)}$.
end for
Algorithm 3: IBPG

An illustration

Assumption 1

For all k, all blocks are updated after the T_{k} iterations performed within the k th outer loop, and there exists a positive constant \bar{T} such that $s \leq T_{k} \leq \bar{T}$.

Notations

Table: Notation

Extension to Bregman divergence

Definition (Bregman distance)

Let $H_{i}: \mathbb{E}_{i} \rightarrow \mathbb{R}$ be a strictly convex function that is continuously differentiable. The Bregman distance associated with H_{i} is defined as:

$$
D_{i}(u, v)=H_{i}(u)-H_{i}(v)-\left\langle\nabla H_{i}(v), u-v\right\rangle, \forall u, v \in \mathbb{E}_{i}
$$

Example:

- Let $H_{i}(u)=\frac{1}{2}\|u\|_{2}^{2}$, we have $D_{i}(u, v)=\frac{1}{2}\|u-v\|_{2}^{2}$.

Definition (Bregman proximal map)

For a given $v \in \mathbb{E}_{i}$, and a positive number β, the Bregman proximal map of a function ϕ is defined by

$$
\operatorname{prox}_{\beta, \phi}^{H_{i}}(v):=\operatorname{argmin}\left\{\phi(u)+\frac{1}{\beta} D_{i}(u, v): u \in \mathbb{E}_{i}\right\} .
$$

Definition

For given $u_{1} \in \operatorname{int} \operatorname{dom} \varphi, u_{2} \in \mathbb{E}_{i}$ and $\beta>0$, the Bregman proximal gradient map of a pair of non-convex function (ϕ, φ) (φ is continuously differentiable) is defined by
$\operatorname{Gprox}_{\beta, \phi, \varphi}^{H_{i}}\left(u_{1}, u_{2}\right):=\operatorname{argmin}\left\{\phi(u)+\left\langle\nabla \varphi\left(u_{1}\right), u\right\rangle+\frac{1}{\beta} D_{i}\left(u, u_{2}\right): u \in \mathbb{E}_{i}\right\}$

Extension to Bregman divergence

Initialize: Choose $\tilde{x}^{(0)}=\tilde{x}^{(-1)}$.
for $k=1, \ldots$ do
$x^{(k, 0)}=\tilde{x}^{(k-1)}$.
for $j=1, \ldots, T_{k}$ do
Choose $i \in\{1, \ldots, s\}$ such that Assumption 1 is satisfied.
Update of IBP: extrapolate as in (3) and compute

$$
\begin{equation*}
x_{i}^{(k, j)} \in \operatorname{prox}_{\beta_{i}^{(k, j)}, F_{i}^{(k, j)}}^{H_{i}}\left(\hat{x}_{i}\right) . \tag{7}
\end{equation*}
$$

Update of IBPG: extrapolate as in (5) and compute

$$
\begin{equation*}
x_{i}^{(k, j)} \in \operatorname{Gprox}_{\beta_{i}^{(k, j)}, g_{i}, f_{i}^{(k, j)}}^{H_{i}}\left(\grave{x}_{i}, \hat{x}_{i}\right) \tag{8}
\end{equation*}
$$

Let $x_{i^{\prime}}^{(k, j)}=x_{i^{\prime}}^{(k, j-1)}$ for $i^{\prime} \neq i$.
end for
Update $\tilde{x}^{(k)}=x^{\left(k, T_{k}\right)}$.
end for
Algorithm 4: IBP and IBPG with Bregman divergence

Convergence Analysis

Assumptions

- The function $H_{i}, i=1, \ldots, s$, is σ_{i}-strongly convex, continuously differentiable and ∇H_{i} is $L_{H_{i}}$-Lipschitz continuous.
Examples: The Euclidean distance (or, more generally, a quadratic entropy distance) is a typical example of a Bregman distance that satisfies this assumption. A non-typical simple example of H_{i} is $x \in \mathbb{R} \mapsto \log \left(x+\sqrt{1+x^{2}}\right)+x^{2}$.
- The proximal maps are well-defined.
- The function F is bounded from below.
- Considering Algorithm IBPG, we need to assume that $\nabla f_{i}^{(k, j)}$ is $L_{i}^{(k, j)}$-Lipschitz continuous, with $L_{i}^{(k, j)}>0$. For notational clarity, we correspondingly use $\bar{L}_{i}^{(k, m)}$ for $L_{i}^{(k, j)}$.

Subsequential convergence of IBP

Choosing parameters for IBP: Let $0<\nu<1$. For $m=1, \ldots, d_{i}^{k}$ and $i=1, \ldots, s$, denote $\theta_{i}^{(k, m)}=\frac{\left(L_{H_{i}} \bar{a}_{i}^{(k, m)}\right)^{2}}{2 \nu \sigma_{i} \bar{\beta}_{i}^{(k, m)}}$. Let $\theta_{i}^{\left(k, d_{i}^{k}+1\right)}=\theta_{i}^{(k+1,1)}$. We choose $\bar{\alpha}_{i}^{(k, m)}$ and $\bar{\beta}_{i}^{(k, m)}$ satisfying $\frac{(1-\nu) \sigma_{i}}{2 \bar{\beta}_{i}^{(k, m)}} \geq \delta \theta_{i}^{(k, m+1)}$, for $m=1, \ldots, d_{i}^{k}$, where $\delta>1$.

Assumption

There exist positive numbers $W_{1}, \bar{\alpha}$ and $\underline{\beta}$ such that $\theta_{i}^{(k, m)} \geq W_{1}$, $\bar{\alpha}_{i}^{(k, m)} \leq \bar{\alpha}$ and $\underline{\beta} \leq \bar{\beta}_{i}^{(k, m)}$ for all $k \in \mathbb{N}, m=1, \ldots, d_{i}^{k}$ and $i=1, \ldots, s$.

Theorem

If F is regular then every limit point of $\left\{\tilde{x}^{(k)}\right\}_{k \in \mathbb{N}}$ is a critical point type I of F. If f is continuously differentiable then every limit point of $\left\{\tilde{x}^{(k)}\right\}_{k \in \mathbb{N}}$ is a critical point type II of F.

Some definitions

- For any $x \in \operatorname{dom} \varphi$, and $d \in \mathbb{E}$, we denote the directional derivative of φ at x in the direction d by

$$
\varphi^{\prime}(x ; d)=\liminf _{\tau \downarrow 0} \frac{\varphi(x+\tau d)-\varphi(x)}{\tau}
$$

- For each $x \in \operatorname{dom} \varphi$, we denote $\hat{\partial} \varphi(x)$ as the Frechet subdifferential of φ at x which contains vectors $v \in \mathbb{E}$ satisfying

$$
\liminf _{y \neq x, y \rightarrow x} \frac{1}{\|y-x\|}(\varphi(y)-\varphi(x)-\langle v, y-x\rangle) \geq 0
$$

If $x \notin \operatorname{dom} \varphi$, then we set $\hat{\partial} \varphi(x)=\emptyset$.

- The limiting-subdifferential $\partial \varphi(x)$ of φ at $x \in \operatorname{dom} \varphi$ is

$$
\begin{aligned}
\partial \varphi(x):= & \left\{v \in \mathbb{E}: \exists x^{(k)} \rightarrow x, \varphi\left(x^{(k)}\right) \rightarrow \varphi(x), v^{(k)} \in \hat{\partial} \varphi\left(x^{(k)}\right),\right. \\
& \left.v^{(k)} \rightarrow v\right\} .
\end{aligned}
$$

Some definitions

- We say that $x^{*} \in \operatorname{dom} F$ is a critical point type I of F if $F^{\prime}\left(x^{*} ; d\right) \geq 0, \forall d$.
- We say that F is regular at $x \in \operatorname{dom} F$ if for all $d=\left(d_{1}, \ldots, d_{s}\right)$ such that $F^{\prime}\left(z ;\left(0, \ldots, d_{i}, \ldots, 0\right)\right) \geq 0, i=1, \ldots, s$, then $F^{\prime}(x ; d) \geq 0$.
- We call $x^{*} \in \operatorname{dom} F$ a critical point type II of F if $0 \in \partial F\left(x^{*}\right)$.

We note that if x^{*} is a minimizer of F then x^{*} is a critical point type I and type II of F.

Subsequential convergence of IBPG

Choosing parameters for IBPG: Choose $\bar{\beta}_{i}^{(k, m)}=\frac{\sigma_{i}}{\kappa \bar{L}_{i}^{(k, m)}}$ with $\kappa>1$. Let $0<\nu<1$. For $m=1, \ldots, d_{i}^{k}$, and $i=1, \ldots, s$ denote $\lambda_{i}^{(k, m)}=\frac{1}{2}\left(\bar{\gamma}_{i}^{(k, m)}+\frac{\kappa L_{H_{i}} \bar{\alpha}_{i}^{(k, m)}}{\sigma_{i}}\right)^{2} \frac{\bar{L}_{i}^{(k, m)}}{\nu(\kappa-1)}$. Let $\lambda_{i}^{\left(k, d_{i}^{k}+1\right)}=\lambda_{i}^{(k+1,1)}$. We choose $\bar{\alpha}_{i}^{(k, m)}, \bar{\beta}_{i}^{(k, m)}$ and $\bar{\gamma}_{i}^{(k, m)}$ satisfying $\frac{(1-\nu)(\kappa-1) \bar{L}_{i}^{(k, m)}}{2} \geq \delta \lambda_{i}^{(k, m+1)}$, for $m=1, \ldots, d_{i}^{k}$, where $\delta>1$.

Assumption

There exist positive numbers $W_{1}, \bar{L}, \bar{\alpha}$ and $\bar{\gamma}$ such that $\lambda_{i}^{(k, m)} \geq W_{1}$, $\bar{L}_{i}^{(k, m)} \leq \bar{L}, \bar{\alpha}_{i}^{(k, m)} \leq \bar{\alpha}$ and $\bar{\gamma}_{i}^{(k, m)} \leq \bar{\gamma}$ for all $k \in \mathbb{N}, m=1, \ldots, d_{i}^{k}$ and $i=1, \ldots, s$.

Theorem

Every limit point of $\left\{\tilde{x}^{(k)}\right\}_{k \in \mathbb{N}}$ is a critical point type II of F.

Relaxing conditions for block-convex F

For IBP, if F is block-wise convex then we can choose $\bar{\alpha}_{i}^{(k, m)}$ and $\bar{\beta}_{i}^{(k, m)}$ satisfying

$$
\begin{equation*}
\frac{2(1-\nu) \sigma_{i}}{\bar{\beta}_{i}^{(k, m)}} \geq \delta \theta_{i}^{(k, m+1)}, \quad \text { for } m=1, \ldots, d_{i}^{k} \tag{9}
\end{equation*}
$$

This condition allows larger values of $\bar{\alpha}_{i}^{(k, m)}$ when using the same $\bar{\beta}_{i}^{(k, m)}$.

Relaxing conditions for convex g_{i} 's

For IBPG, if the functions g_{i} 's are convex we can use

$$
\bar{\beta}_{i}^{(k, m)}=\sigma_{i} / \bar{L}_{i}^{(k, m)}, \quad \lambda_{i}^{(k, m)}=\frac{1}{2}\left(\bar{\gamma}_{i}^{(k, m)}+\frac{L_{H_{i}} \bar{\alpha}_{i}^{(k, m)}}{\sigma_{i}}\right)^{2} \frac{\bar{L}_{i}^{(k, m)}}{\nu}
$$

and choose $\bar{\alpha}_{i}^{(k, m)}$ and $\bar{\gamma}_{i}^{(k, m)}$ satisfying $\frac{(1-\nu) \bar{L}_{i}^{(k, m)}}{2} \geq \delta \lambda_{i}^{(k, m+1)}$ for $m=1, \ldots, d_{i}^{k}$, . This condition allows a larger stepsize.

Relaxing conditions for block-convex f and convex g_{i} 's

For IBPG, if the g_{i} 's are convex and $f(x)$ is block-wise convex, then we can use larger extrapolation parameters. Specifically, we choose $H_{i}\left(x_{i}\right)=\frac{1}{2}\left\|x_{i}\right\|^{2}$ and let $\bar{\beta}_{i}^{(k, m)}=1 / \bar{L}_{i}^{(k, m)}$ and

$$
\lambda_{i}^{(k, m)}=\left(\left(\bar{\gamma}_{i}^{(k, m)}\right)^{2}+\frac{\left(\bar{\gamma}_{i}^{(k, m)}-\bar{\alpha}_{i}^{(k, m)}\right)^{2}}{\nu}\right) \frac{\bar{L}_{i}^{(k, m)}}{2}
$$

where $0<\nu<1$, and choose $\bar{\alpha}_{i}^{(k, m)}$ and $\bar{\gamma}_{i}^{(k, m)}$ satisfying

$$
\frac{1-\nu}{2} \bar{L}_{i}^{(k, m)} \geq \delta \lambda_{i}^{(k, m+1)}, \text { for } m=1, \ldots, d_{i}^{k}
$$

Global convergence

We modify the proof recipe proposed by J. Bolte, S. Sabach, and M. Teboulle (Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1) : 459-494, Aug 2014) so that it is applicable to our proposed methods.

Definition (KL function)

A function $\phi(x)$ is said to have the Kurdyka-Łojasiewicz (KL) property at $\bar{x} \in \operatorname{dom} \partial \phi$ if there exists $\eta \in(0,+\infty]$, a neighborhood U of \bar{x} and a concave function $\xi:[0, \eta) \rightarrow \mathbb{R}_{+}$that is continuously differentiable on $(0, \eta)$, continuous at $0, \xi(0)=0$, and $\xi^{\prime}(s)>0$ for all $s \in(0, \eta)$, such that for all $x \in U \cap[\phi(\bar{x})<\phi(x)<\phi(\bar{x})+\eta]$, the following inequality holds

$$
\xi^{\prime}(\phi(x)-\phi(\bar{x})) \operatorname{dist}(0, \partial \phi(x)) \geq 1
$$

If $\phi(x)$ satisfies the KL property at each point of $\operatorname{dom} \partial \phi$ then ϕ is a KL function.
Some noticeable examples include real analytic functions, semi-algebraic functions, locally strongly convex functions.

Theorem (Global convergence recipe)

Let $\Phi: \mathbb{R}^{N} \rightarrow(-\infty,+\infty]$ be a proper and lower semicontinuous function which is bounded from below. Let \mathcal{A} be a generic algorithm which is assumed to generate a bounded sequence $\left\{z^{(k)}\right\}_{k \in \mathbb{N}}$ by

$$
z^{(0)} \in \mathbb{R}^{N}, z^{(k+1)} \in \mathcal{A}\left(z^{(k)}\right), \quad k=0,1, \ldots
$$

Assume that there exist positive constants ρ_{1}, ρ_{2} and ρ_{3} and a nonnegative sequence $\left\{\zeta_{k}\right\}_{k \in \mathbb{N}}$ such that the following conditions are satisfied
(B1) Sufficient decrease property:

$$
\rho_{1}\left\|z^{(k)}-z^{(k+1)}\right\|^{2} \leq \rho_{2} \zeta_{k}^{2} \leq \Phi\left(z^{(k)}\right)-\Phi\left(z^{(k+1)}\right), \quad \forall k=0,1, \ldots
$$

(B2) Boundedness of subgradient:

$$
\left\|w^{(k+1)}\right\| \leq \rho_{3} \zeta_{k}, \quad w^{(k)} \in \partial \Phi\left(z^{(k)}\right), \quad \forall k=0,1, \ldots
$$

Furthermore, assume that
(B3) KL property: Φ is a $K L$ function.
(B4) A continuity condition: If a subsequence $\left\{z^{\left(k_{n}\right)}\right\}_{n \in \mathbb{N}}$ of $\left\{z^{(k)}\right\}$ converges to \bar{z} then $\Phi\left(z^{\left(k_{n}\right)}\right) \rightarrow \Phi(\bar{z})$ as $n \rightarrow \infty$.
Then we have $\sum_{k=1}^{\infty} \zeta_{k}<\infty$, and $\left\{z^{(k)}\right\}$ converges to a critical point type II of Φ.

Convergence rate

The following theorem establish the convergence rate under Łojasiewicz property.

Theorem

Suppose Φ is a $K L$ function and $\xi(a)$ of the $K L$ function definition has the form $\xi(a)=C a^{1-\omega}$ for some $C>0$ and $\omega \in[0,1)$. Then we have
(i) If $\omega=0$ then $\left\{z^{(k)}\right\}$ converges after a finite number of steps.
(ii) If $\omega \in(0,1 / 2]$ then there exists $\omega_{1}>0$ and $\omega_{2} \in[0,1)$ such that $\left\|z^{(k)}-\bar{z}\right\| \leq \omega_{1} \omega_{2}^{k}$.
(iii) If $\omega \in(1 / 2,1)$ then there exists $\omega_{1}>0$ such that

$$
\left\|z^{(k)}-\bar{z}\right\| \leq \omega_{1} k^{-(1-\omega) /(2 \omega-1)} .
$$

Theorem (Global convergence of IBP and IBPG)

Assumption

- The sequences $\left\{\tilde{x}^{(k)}\right\}_{k \in \mathbb{N}}$ generated by IBP and IBPG are bounded. (Note: this condition is satisfied when F has bounded level sets).
- f is continuously differentiable and ∇f is Lipschitz continuous on bounded subsets of \mathbb{E}.
- There exists a constant W_{2} such that, for all $k \in \mathbb{N}, m=1, \ldots, d_{i}^{k}$ and $i=1, \ldots, s$, we have $\theta_{i}^{(k, m)} \leq W_{2}$ for IBP, $\lambda_{i}^{(k, m)} \leq W_{2}$ for IBPG and $\delta>\left(L_{H} W_{2}\right) /\left(\sigma W_{1}\right)$.
- Assume F is a KL-function.

Then the whole sequence $\left\{\tilde{x}^{(k)}\right\}_{k \in \mathbb{N}}$ generated by IBP or IBPG converges to a critical point type II of F.

Applying IBPG to solve NMF with $s=2$

$$
\min _{U, V} \frac{1}{2}\|X-U V\|_{F}^{2}+\mathbb{I}_{\mathbb{R}_{+}^{m \times r}}(U)+\mathbb{I}_{\mathbb{R}_{+}^{r \times n}}(V)
$$

- We choose the Frobenius norm for (6). We have $\nabla_{U} f=U V V^{T}-X V^{T}$ and $\nabla_{V} f=U^{T} U V-U^{T} X$, hence (6) is a projected gradient step.
- IBPG should update U or V several times before updating the other one. This strategy accelerates the algorithm compared to the pure cyclic update rule, see [5].

Choosing parameters

We have $\bar{L}_{1}^{(k, m)}=\tilde{L}_{1}^{(k)}=\left\|\left(\tilde{V}^{(k-1)}\right)^{T} \tilde{V}^{(k-1)}\right\|$, and $\bar{L}_{2}^{(k, m)}=\tilde{L}_{2}^{(k)}=\left\|\left(\tilde{U}^{(k)}\right)^{T} \tilde{U}^{(k)}\right\|$ for $m \geq 1$.
We choose $\bar{\beta}_{i}^{(k, m)}=1 / \tilde{L}_{i}^{(k)}, \bar{\gamma}_{i}^{(k, m)}=\min \left\{\frac{\tau_{k}-1}{\tau_{k}}, \breve{\gamma} \sqrt{\frac{\tilde{L}_{i}^{(k-1)}}{\tilde{L}_{i}^{(k)}}}\right\}$, and $\bar{\alpha}_{i}^{(k, m)}=\breve{\alpha} \bar{\gamma}_{i}^{(k, m)}$, where $\tau_{0}=1, \tau_{k}=\frac{1}{2}\left(1+\sqrt{1+4 \tau_{k-1}^{2}}\right), \breve{\gamma}=0.99$ and $\breve{\alpha}=1.01$.

The parameters satisfy the relaxing conditions for block-convex f and convex g_{i} 's. IBPG for NMF guarantees a subsequential convergence.
[5] N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization. Neural Computation, 24(4):10851105, 2012.

Applying IBP to solve NMF with $s=2 \mathbf{r}$

$$
\min _{U_{: i}, V_{i:}} \frac{1}{2}\left\|X-\sum_{i=1}^{\mathrm{r}} U_{: i} V_{i:}\right\|_{F}^{2}+\sum_{i=1}^{\mathrm{r}} \mathbb{I}_{\mathbb{R}_{+}^{m}}\left(U_{: i}\right)+\sum_{i=\mathrm{r}+1}^{2 \mathrm{r}} \mathbb{I}_{\mathbb{R}_{+}^{n}}\left(V_{i:}\right) .
$$

Applying IBP:

- We choose the Frobenius norm for (4). Equation (4) has the closed form solution

$$
\begin{aligned}
& \underset{U_{: i} \geq 0}{\operatorname{argmin}} \sum \frac{1}{2}\left\|X-\sum_{q=1}^{i-1} U_{: q} V_{q:}-\sum_{q=i+1}^{r} U_{: q} V_{q:}-U_{: i} V_{i:}\right\|^{2} \\
& \quad+\frac{1}{2 \beta_{i}}\left\|U_{: i}-\hat{U}_{: i}\right\|^{2} \\
& =\max \left(0, \frac{X V_{i:}^{T}-(U V) V_{i:}^{T}+U_{: i} V_{i:} V_{i:}^{T}+1 / \beta_{i} \hat{U}_{: i}}{V_{i:} V_{i:}^{T}+1 / \beta_{i}}\right),
\end{aligned}
$$

- IBP should update the columns of U and the rows of V several times before doing so for the other one.

Choosing parameters

We choose $1 / \beta_{i}^{(k, m)}=0.001$ and $\alpha_{i}^{(k, m)}=\tilde{\alpha}^{(k)}=\min \left(\bar{\beta}, \gamma \tilde{\alpha}^{(k-1)}\right)$, with $\bar{\beta}=1, \gamma=1.01$ and $\tilde{\alpha}^{(1)}=0.6$.

These parameters satisfy the global convergence conditions, hence IBP for NMF guarantees a global convergence.

Preliminary numerical results

We use the following notations for NMF algorithms:

- IBP: this is our proposed IBP algorithm.
- IBPG: this is our proposed IBPG algorithm when U and V are cyclically updated.
- IBPG-A: this is our proposed IBPG algorithm when we update U several times before updating V, and vice versa.
- iPALM: the inertial proximal alternating linearized minimization method proposed in [6].
- A-HALS: the accelerated hierarchical alternating least squares algorithm in [7].
- E-A-HALS: the acceleration version of A-HALS using extrapolation points proposed in [8]. This algorithm was experimentally shown to outperform A-HALS. This is, as far as we know, one of the most efficient NMF algorithms. Note that E-A-HALS is a heuristic with no convergence guarantees.
- APGC: the accelerated proximal gradient coordinate descent method proposed in [9].
[6] T. Pock and S. Sabach. Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM Journal on Imaging Sciences, 9(4):1756-1787, 2016.
[7] N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization. Neural Computation, 24(4):1085-1105, 2012.
[8] A. M. S. Ang and N. Gillis. Accelerating nonnegative matrix factorization algorithms using extrapolation. Neural Computation, 31(2):417-439, 2019.
[9] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences, 6(3):1758-1789, 2013.

We define relative errors

$$
\text { relerror }_{k}=\frac{\left\|X-\tilde{U}^{(k)} \tilde{V}^{(k)}\right\|_{F}}{\|X\|_{F}}
$$

We let

- $e_{\text {min }}=0$ for the experiments with low-rank synthetic data sets, and
- in the other experiments, $e_{\min }$ is the lowest relative error obtained by any algorithms with any initializations
We define

$$
E(k)=\text { relerror }_{k}-e_{\min } .
$$

Low-rank synthetic data sets

- Two low-rank matrices of size 200×200 and 200×500 are generated by letting $X=U V$, where U and V are generated by MATLAB commands $\operatorname{rand}(\mathbf{m}, \mathbf{r})$ and $\operatorname{rand}(\mathbf{r}, \mathbf{n})$ respectively, with $\mathbf{r}=20$.
- For each matrix X, we run all algorithms with the same 50 random initializations $W_{0}=\operatorname{rand}(\mathbf{m}, \mathbf{r})$ and $V_{0}=\operatorname{rand}(\mathbf{r}, \mathbf{n})$, and for each initialization we run each algorithm for 20 seconds.

Low-rank synthetic data sets

Figure: Average value of $E(k)$ with respect to time on 2 random low-rank matrices: 200×200 (left) and 200×500 (right).

Low-rank synthetic data sets

To compare the accuracy of the solutions, we generate 80 random low-rank $\mathbf{m} \times \mathbf{n}$ matrices, \mathbf{m} and \mathbf{n} are random integer numbers in the interval $[200,500]$. For each X we run the algorithms for 20 seconds with 1 random initialization.

Table: Average, standard deviation and ranking of the value of $E(k)$ at the last iteration among the different runs on the low-rank synthetic data sets. The best performance is highlighted in bold.

Algorithm	mean \pm std	ranking
A-HALS	$1.22710^{-3} \pm 7.36510^{-4}$	$(1,0,3,4,7,24,41)$
E-A-HALS	$8.50110^{-4} \pm 6.88210^{-4}$	$(16,10,12,13,17,3,9)$
IBPG-A	$\mathbf{5 . 0 3 6 1 0} 10^{-4} \pm 5.52210^{-4}$	$(39,10,14,10,3,2,2)$
IPG	$1.20910^{-3} \pm 7.38610^{-4}$	$(0,3,5,7,15,39,11)$
APGC	$8.72610^{-4} \pm 6.56110^{-4}$	$(3,10,14,22,18,3,10)$
IBPG	$6.62110^{-4} \pm 6.37110^{-4}$	$(17,17,15,11,14,2,4)$
iPALM	$6.75910^{-4} \pm 6.30210^{-4}$	$(17,22,13,12,6,7,3)$

Full-rank synthetic data sets

- Two full-rank matrices of size 200×200 and 200×500 are generated by MATLAB command $X=\operatorname{rand}(m, n)$. We take $\mathbf{r}=20$.
- For each matrix X, we run all algorithms with the same 50 random initializations $W_{0}=\operatorname{rand}(\mathbf{m}, \mathbf{r})$ and $V_{0}=\operatorname{rand}(\mathbf{r}, \mathbf{n})$, and for each initialization we run each algorithm for 20 seconds.

Full-rank synthetic data sets

Figure: Average value of $E(k)$ with respect to time on 2 random full-rank matrices: 200×200 (left) and 200×500 (right).

Full-rank synthetic data sets

We then generate 80 full-rank matrices $X=\operatorname{rand}(m, n)$, with \mathbf{m} and \mathbf{n} being random integer numbers in the interval $[200,500]$. For each matrix X, we run the algorithms for 20 seconds with a single random initialization.

Table: Average, standard deviation and ranking of the value of $E(k)$ at the last iteration among the different runs on full-rank synthetic data sets. The best performance is highlighted in bold.

Algorithm	mean \pm std	ranking
A-HALS	$0.450056 \pm 7.68810^{-3}$	$(5,17,11,10,10,11,16)$
E-A-HALS	$0.450055 \pm 7.68410^{-3}$	$(13,11,8,17,8,7,16)$
IBPG-A	$0.450052 \pm 7.68210^{-3}$	$(25,5,11,7,7,16,9)$
IPG	$0.450057 \pm 7.68610^{-3}$	$(14,14,10,10,11,16,5)$
APGC	$0.450060 \pm 7.68210^{-3}$	$(7,7,18,12,12,9,15)$
IBPG	$0.450062 \pm 7.67110^{-3}$	$(13,10,10,10,18,7,12)$
iPALM	$0.450060 \pm 7.68310^{-3}$	$(4,15,12,15,15,12,7)$

Experiments with real data sets

We test the algorithms on Urban and San Diego data sets. We choose the rank $\mathbf{r}=10$. For each data set, we generate 35 random initializations and for each initialization we run each algorithm for 200 seconds.

Figure: Average value of $E(k)$ with respect to time on 2 hyperspectral images: urban (the left) and SanDiego (the right).

Dense hyperspectral images

Table: Average error, standard deviation and ranking among the different runs for urban and SanDiego data sets.

Algorithm	mean \pm std	ranking
E-A-HALS	$0.018823 \pm 6.73910^{-4}$	$(17,28,25)$
IBPG-A	$\mathbf{0 . 0 1 8 3 1 6} \pm 9.74510^{-4}$	$(\mathbf{5 3}, 15,2)$
APGC	$0.018728 \pm 7.77910^{-4}$	$(0,27,43)$

More experiments on NMF and NCPD can be found in the supplementary material of our paper.

Thank you!

[^0]: [1] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka - Lojasiewicz inequality. Mathematics of Operations Research, 35(2) : 438-457, 2010.

