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Adversarial Examples

Adversarial examples:

(Goodfellow et al. 2015)

Generating adversarial examples:

maximize
xadv

`(f (xadv ), y)

subject to xadv ≈ x
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How “Similar” Is Similar?

How to quantify xadv ≈ x?

‖x− xadv‖p ≤ ε (Szegedy et al. 2014)

point-wise function (Laidlaw et al. 2019)

geometric transformation (Engstrom et al. 2019)

Wasserstein distance (Wong et al. 2019)

...

Our contributions

stronger and faster Wasserstein adversarial attacks

higher robust accuracy using adversarial training
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What is Wasserstein Distance?

W(x, z) = min
Π≥0

〈Π,C 〉 s.t. Π1 = x,Π>1 = z

x ∈ Rn and z ∈ Rn: input images

Π ∈ Rn×n: transportation matrix

C ∈ Rn×n: transportation cost

x z

cost Πij × Cij
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Applications across Different Domains

(Arjovsky et al. 2017; Rabin et al. 2014; Solomon et al. 2015)
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Why Wasserstein Distance?

Captures geometry in image space, e.g. translation, rotation

ǫ = 0.05 ǫ = 0.10 ǫ = 0.20 ǫ = 0.40

ǫ = 0.50 ǫ = 1.00 ǫ = 2.00 ǫ = 4.00

ǫ = 0.05 ǫ = 0.10 ǫ = 0.20 ǫ = 0.40

`∞

`2

Wasserstein

predict: 4 predict: 9
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Computing Wasserstein Adversarial Examples

Search for adversarial examples:

maximize
xadv

`(xadv )

subject to W (x, xadv ) ≤ ε

Alternatively, search for transportation matrix:

maximize
Π≥0

`(Π>1)

subject to Π1 = x, 〈Π,C 〉 ≤ ε

Then, recover adversarial examples:

xadv = Π>1
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Optimization in Transportation Matrix

ε

∇Π` (Π)

(a) projected gradient

minimize
Π≥0

1
2‖Π− G‖2

F

subject to Π1 = x, 〈Π, C 〉 ≤ ε

(b) Frank-Wolfe (Jaggi 2011)

minimize
Π≥0

〈Π,H〉

subject to Π1 = x, 〈Π,C 〉 ≤ ε

For n dimensional images, Π has n2 variables...
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Solve Projection in PGD

minimize
Π≥0

1
2‖Π− G‖2

F

subject to Π1 = x, 〈Π,C 〉 ≤ ε

The Lagrange dual can be simplified as a univariate problem

maximize
λ≥0

g(λ)

No closed-form expression...

But g ′(λ) can be evaluated in O(n2 log n) time

Proposition

0 ≤ λ? ≤
2 ‖vec(G )‖∞ + ‖x‖∞

mini 6=j{Cij}
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Bisection on the Dual

maximize
λ≥0

g(λ)

Converge to high precision ≤ 20 iterations in practice.

λ

g(λ)

λ?
2‖vec(G)‖∞+‖x‖∞

mini 6=j{Cij}

0
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Solve Linear Minimization in Frank-Wolfe

minimize
Π≥0

〈Π,H〉

subject to Π1 = x, 〈Π,C 〉 ≤ ε

The Lagrange dual can be simplified as a univariate problem

maximize
λ≥0

g(λ)

Bound on the optimum: 0 ≤ λ? ≤ 2‖vec(H)‖∞
mini 6=j{Cij}

Does not work...
I difficult to recover primal solution
I severe numerical instability
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Entropic Regularization

minimize
Π≥0

〈Π,H〉+ γ

n∑
i=1

n∑
j=1

Πij log Πij

subject to Π1 = x, 〈Π,C 〉 ≤ ε

Closed-form expression to recover primal solution

Entropic regularization introduces approximation error

But the approximation error is guaranteed to be small
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Exploit Sparsity

Local transportation constraint (Wong et al. 2019)
⇒ structured sparsity in Π

Per iteration cost is reduced to O(n) by exploiting sparsity

K.Wu, A.Wang and Y.Yu Wasserstein Adversarial Attacks July 29, 2020 13 / 18



Comparison

ε = 0.001 0.002 0.003 0.004 0.005
0
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80

adversarial accuracy on CIFAR-10 (standard training)

Wong et al. (2019) Dual Proj.(ours) Dual LMO(ours)
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time per iteration in ms
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Entropic Regularization Reflects Shapes
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Scalable to High Dimensional Data
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Improved Adversarial Training

Stronger attacks improve adversarial training!

ε = 0.001 0.002 0.003 0.004 0.005
0

20

40

60

80

adversarial accuracy of models on CIFAR-10 (adversarial training)

Wong et al. (2019) FW + dual LMO (ours)
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Summary

PGD and Frank-Wolfe complement each other nicely

PGD with dual projection is the strongest attack

Frank-Wolfe with dual LMO is the fastest attack

Improved adversarial training

Applicable to any Wasserstein constrained optimization

K.Wu, A.Wang and Y.Yu Wasserstein Adversarial Attacks July 29, 2020 18 / 18


