

Privately Detecting Changes in Unknown Distributions

Wanrong Zhang, Georgia Tech

joint work with Rachel Cummings, Sara Krehbiel, Yuliia Lut

Motivation I: Smart-home IoT devices

0123456789

0123456789

.

Motivation II: Disease outbreaks

EMERGENCY PREPAREDNESS & RESPONSE

COVID-19 CORONAVIRUS DISEASE 2019

Change-point problem:

Identify distributional changes in stream of highly sensitive data Model:

Data points $x_1, ..., x_{k^*} \sim P_0$ (pre-change) $x_{k^*}, ..., x_n \sim P_1$ (post-change) Question:

Need formal privacy guarantees for change-point detection algorithms

Estimate the unknown change time k^*

Previous work: parametric model [CKM+18] (P_0 and P_1 known)

Our work: nonparametric model $(P_0 \text{ and } P_1 \text{ unknown})$

Differential privacy [DMNS '06]

Bound the maximum amount that one person's data can change the distribution of an algorithm's output

An algorithm $M: T^n \to R$ is ϵ -differentially private if \forall neighboring $x, x' \in T^n$ and $\forall S \subseteq R$, $P[M(x) \in S] \leq e^{\epsilon} P[M(x') \in S]$

- S as set of "bad outcomes"
- Worst-case guarantee

Privately Detecting Changes in Unknown Distributions

- 1. Offline setting: dataset known in advance
- 2. Online setting: data points arrive one at a time
- 3. Drift change detection (in paper)
- 4. Empirical results (in paper)

Privately Detecting Changes in Unknown Distributions

1. Offline setting: dataset known in advance

- 2. Online setting: data points arrive one at a time
- 3. Drift change detection (in paper)
- 4. Empirical results (in paper)

Mann-Whitney test [MW '47]

Datasets: $x_1, x_2, ..., x_k \sim P_0$ and $x_{k+1}, x_{k+2}, ..., x_n \sim P_1$

$$H_0: P_0 = P_1, H_1: P_0 \neq P_1$$

Test statistic:
$$V(k) = \frac{1}{k(n-k)} \sum_{j=k+1}^{n} \sum_{i=1}^{k} I(x_i > x_j)$$

Under H_1 , require $a := Pr_{x \sim P_0, y \sim P_1}[x > y] \neq \frac{1}{2}$

Number of such pairs (x_i, x_j) such that $x_i > x_j$ Non-private nonparametric change-point detection [Darkhovsky '79]

- 1. For every $k \in [\gamma n], ... \lfloor (1 \gamma)n \rfloor$
- 2. Compute V(k)
- 3. Output $\hat{k} = argmax_k V(k)$ –

Can we compute V(k) or arg max V(k) privately?

Adding differential privacy

Differentially private algorithms add noise that scale with the *sensitivity* of a query.

Query sensitivity: The sensitivity of real-valued query
$$f$$
 is:

$$\Delta f = \max_{X,X'neighbors} |f(X) - f(X')|.$$

<u>Laplace Mechanism</u>: The mechanism $M(f, X, \epsilon) = f(X) + Lap(\frac{\Delta f}{\epsilon})$ is ϵ -differentially private.

Offline PNCPD = Mann-Whitney + ReportNoisyMax

Private Nonparametric Change-Point Detector: $PNCPD(X, \epsilon, \gamma)$

- 1. Input: database, privacy parameter ϵ , constraint parameter γ
- 2. for $\mathbf{k} \in [\gamma n], \dots \lfloor (1 \gamma)n \rfloor$
- 3. Compute statistic V(k)
- 4. Sample $Z_k \sim Lap\left(\frac{2}{\epsilon \gamma n}\right)$
- 5. Output $\tilde{k} = argmax_k(V(k) + Z_k)$

Main results: OfflinePNCPD

<u>Theorem</u>: Offline $PNCPD(X, \epsilon, \gamma)$ is ϵ -differentially private and with probability $1 - \beta$, it outputs private change-point estimator \tilde{k} with error at most

$$\left|\tilde{k} - k^*\right| < O\left(\frac{1}{\epsilon\gamma^4(a - 1/2)^2}\right)^{1.01} \cdot \log\frac{1}{\beta}$$

- Previous non-private analysis [Darkhovsky '76] $\left| \hat{k} k^* \right| < O(n^{2/3})$
- Our improved non-private analysis:

$$\left|\hat{k} - k^*\right| < O\left(\frac{1}{\gamma^4(a - 1/2)^2} \log \frac{1}{\beta}\right) = O(1)$$

Privately Detecting Changes in Unknown Distributions

1. Offline setting: dataset known in advance

2. Online setting: data points arrive one at a time

- 3. Drift change detection (in paper)
- 4. Empirical results (in paper)

More challenging: must detect change quickly without much postchange data

High Level Approach:

- 1. Privately detect online when V(k) > T in the center of a sliding window of last n data points.
- 2. Run OfflinePNCPD on the identified window.

Have DP algorithm (AboveNoisyThreshold) for this

More challenging: must detect change quickly without much postchange data

Our Approach:

- 1. Run AboveNoisyThreshold on Mann-Whitney queries in the center of a sliding window of last *n* data points.
- 2. Run OfflinePNCPD on the identified window.

More challenging: must detect change quickly without much postchange data

Our Approach:

- 1. Run AboveNoisyThreshold on Mann-Whitney queries in the center of a sliding window of last *n* data points.
- 2. Run OfflinePNCPD on the identified window.

More challenging: must detect change quickly without much postchange data

Our Approach:

- 1. Run AboveNoisyThreshold on Mann-Whitney queries in the center of a sliding window of last *n* data points.
- 2. Run OfflinePNCPD on the identified window.

OnlinePNCPD

- 1. Input: database $X = \{x_1, ...\}$, privacy parameter ϵ , threshold T
- 2. Let $\hat{T} = T + \operatorname{Lap}\left(\frac{8}{\epsilon n}\right)$
- 3. For each new data point x_k :
- 4. Compute Mann-Whitney statistic V(k) in center of last n data points
- 5. Sample $Z_k \sim \operatorname{Lap}\left(\frac{16}{\epsilon n}\right)$
- 6. If $V(k) + Z_j > \hat{T}$, then
- 7. Run OfflinePNCPD on last n data points with $\epsilon/2$
- 8. Else, output ⊥

Main result: OnlinePNCPD

<u>Theorem</u>: Online $PNCPD(X, T, \epsilon, \gamma)$ is ϵ -differentially private. For appropriate threshold T, with probability $1 - \beta$, it outputs private change-point estimator \tilde{k} with error at most

$$\left|\tilde{k} - k^*\right| < O\left(\frac{1}{\epsilon}\log\frac{n}{\beta}\right)$$

where n is the window size.

Choice of T

- Can't raise alarm too early (False positive: $T > T_L$)
- Can't fail to raise alarm at true change (False negative: $T < T_H$)

Privately Detecting Changes in Unknown Distributions

- 1. Offline setting: dataset known in advance
- 2. Online setting: data points arrive one at a time
- 3. Drift change detection (in paper)
- 4. Empirical results (in paper)

References

- Cummings, R., Krehbiel, S., Mei, Y., Tuo, R., & Zhang, W. Differentially private change-point detection. In *Advances in Neural Information Processing Systems*, NeurIPS'18 pp. 10848-10857,2018
- Dwork, C., McSherry, F., Nissim, K., & Smith, A. Calibrating noise to sensitivity in private data analysis. In *Theory of cryptography conference*, pp. 265-284, 2006.
- Dwork, C., Roth, A. The algorithmic foundations of differential privacy. *Foundations and Trends in Theoretical Computer Science*, 9(3– 4), 211-407, 2014.
- Darkhovsky, B. A nonparametric method for the a posteriori detection of the ``disorder'' time of a sequence of independent random variables. Theory of Probability & Its Applications, 21(1):178-183, 1976.
- Mann, H.B. and Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. *The annals of mathematical statistics*, pp 50-60, 1947.

Privately Detecting Changes in Unknown Distributions

Wanrong Zhang, Georgia Tech

joint work with Rachel Cummings, Sara Krehbiel, Yuliia Lut