

Vandex

Vandex

Optimal Non-parametric Learning in Repeated Contextual Auctions with Strategic Buyer

Alexey Drutsa

Setup

Repeated Contextual Posted-Price Auctions

Different goods (e.g., ad spaces)

- > described by d-dimensional feature vectors (contexts) from $[0,1]^d$
- > are repeatedly offered for sale by a seller
- > to a single buyer over T rounds (one good per round).

The buyer

- > holds a private fixed valuation function $v: [0,1]^d \rightarrow [0,1]$) used to calculate his valuation v(x) for a good with context $x \in [0,1]^d$,
- $\rightarrow v$ is unknown to the seller.

At each round t = 1, ..., T,

-) a feature vector x_t of the current good is observed by the seller and the buyer
- > a price p_t is offered by the seller,
- > and an allocation decision $a_t \in \{0,1\}$ is made by the buyer: $a_t = 0$, when the buyer rejects, and $a_t = 1$, when the buyer accepts.

Seller's pricing algorithm and buyer strategy

The seller applies a pricing algorithm A that sets prices $\{p_t\}_{t=1}^T$ in response to buyer decisions $\mathbf{a} = \{a_t\}_{t=1}^T$ and observed contexts $\mathbf{x} = \{x_t\}_{t=1}^T$. The price p_t can depend only on

- > past decisions $\{a_s\}_{s=1}^{t-1}$
- > feature vectors $\{x_s\}_{s=1}^t$
- > the horizon T

Strategic buyer

The seller announces her pricing algorithm A in advance

The buyer has some distribution (beliefs) D about future contexts.

In each round t, given the history of previous rounds, he chooses his decision a_t s.t. it maximizes his future γ -discounted surplus:

$\mathbb{E}_{x_s \sim D}\left[\sum_{s=t}^T \gamma^{s-1} a_s(v(x_s) - p_s)\right], \qquad \gamma \in (0,1]$

The game's workflow and knowledge structure

D	
er	

Seller's goal

The seller's strategic regret: SReg $(T, A, v, \gamma, x_{1:T}, D)$: = $\sum_{t=1}^{T} (v(x_t) - a_t^{Opt} p_t)$

it is Lipschitz (a standard requirement for non-parametric learning):

The seller seeks for a no-regret pricing for **worst-case** valuation function:

 $\sup_{v \in \operatorname{Lip}_L([0,1]^d), x_{1:T}, D} \operatorname{SReg}(T, A, v, \gamma, x_{1:T}, D) = o(T)$ **Optimality**: the lowest possible upper bound for the regret of the form O(f(T)).

We will learn the function v in a non-parametric way. For this, we will assume that $\operatorname{Lip}_{L}([0,1]^{d}) \coloneqq \{f \colon [0,1]^{d} \to [0,1] \mid \forall x, y \in [0,1]^{d} \mid f(x) - f(y) \mid \leq L \|x - y\| \}$

Background & Research question

Background	
[Kleinberg et al., FOCS'2003]	Non-co Horizor myopic
[Amin et al., NIPS'2013]	Non-co The stra ∄ no-reg
[Drutsa, WWW'2017]	Non-co Horizor strateg
[Mao et al., NIPS'2018]	Our nor Horizor myopic

d = 0.

n-dependent optimal algorithm against buyer ($\gamma = 0$) with truthful regret $\Theta(\log \log T)$.

d = 0. ategic setting is introduced. gret pricing for non-discount case $\gamma = 1$.

d = 0.

n-independent optimal algorithm against ic buyer with regret $\Theta(\log \log T)$ for $\gamma < 1$.

n-parametric contextual setup (d > 0). n-dependent optimal algorithm against

buyer ($\gamma = 0$) with truthful regret $\Theta(T\overline{d+1})$.

Research question

The key approaches of the non-contextual optimal algorithms ([pre]PRRFES) cannot be directly applied to contextual algorithm of [Mao et al., NIPS'2018]

In order to search the valuation of the strategic buyer without context:

- > Penalization rounds are used

> We do not propose prices below the ones that are earlier accepted In the approach of [Mao et al., NIPS'2018]:

- > Standard penalization does not help

In this study, I overcome these issues and propose an optimal non-parametric algorithm for the contextual setting with strategic buyer

> Proposed prices can be below the ones that are earlier accepted by the buyer

Novel optimal algorithm

PELS has three parameters:

- > the price offset $\eta \in [1, +\infty)$
- the degree of penalization $r \in \mathbb{N}$
- > the exploitation rate $g: \mathbb{Z}_+ \to \mathbb{Z}_+$

This algorithm keeps track of

- a partition \mathfrak{X} of the feature domain $[0,1]^d$

initialized to $[(4\eta + 6)L]^d$ cubes (boxes) with side length $l = 1/[(4\eta + 6)L]$: $\mathfrak{X} = \{I_1 \times I_2 \times \cdots \times I_d \mid (I_1, I_2, \dots, I_d) \in \{[0, l], (l, 2l], \dots, (1 - l, 1]\}^d\}.$

For each box $X \in \mathfrak{X}$, PELS also keeps track of:

- > the lower bound $u^X \in [0,1]$,
- the upper bound $w^X \in [0,1]$, >
- > the depth $m^X \in \mathbb{Z}_+$.

They are initialized as follows: $u^X = 0$, $w^X = 1$, and $m^X = 0$, $X \in \mathfrak{X}$.

The workflow of the algorithm is organized independently in each box $X \in \mathfrak{X}$. the algorithm receives a good with a feature vector $x_t \in [0,1]^d$

finds the box $X \in \mathfrak{X}$ in the current partition \mathfrak{X} s.t. $x_t \in X$. Then, the proposed price p_t is determined only from the current state associated with the box X, while the buyer decision a_t is used only to update the state associated with this box X.

In each box $X \in \mathfrak{X}$, the algorithm iteratively offers exploration price:

If this price is accepted by the buyer: > the lower bound u^X is increased by Ldiam(X).

If this price is rejected:

- the upper bound w^X is decreased
- 1 is offered as a **penalization** pric (if one of them is accepted, we co

- $u^X + \eta L \operatorname{diam}(X)$

d by
$$(w^X - u^X) - 2(\eta + 1)Ldiam(X)$$

there for $r - 1$ next rounds in this box X
to not in the remaining rounds in the remaining rounds in the remaining rounds in the remaining rounds is the remaining round rounds is t

then PELS:

- offers the exploitation price u^X for $g(m^X)$ next rounds in this box X (buyer decisions made at them do not affect further pricing);
- bisects each side of the box X to obtain 2^d boxes $\mathfrak{X}_X := \{X_1, \dots, X_{2^d}\}$ with ℓ_{∞} -diameter equal to diam(X)/2;
- refines the partition \mathfrak{X}_X replacing the box X by the new boxes \mathfrak{X}_X . > These new boxes \mathfrak{X}_X
 -) inherit the state of the bounds u^X and w^X from the current state of X, > while their depth $m^Y = m^X + 1 \quad \forall Y \in \mathfrak{X}_X$.

If, after an acceptance of an exploration price or after penalization rounds we have $(w^{X} - u^{X}) < (2\eta + 3)Ldiam(X)$,

PELS is optimal

Theorem 1. Let $d \geq 1$ and $\gamma_0 \in (0,1)$. Then for the pricing algorithm PELS A with:

- > the number of penalization rounds $r \ge \left| \log_{\gamma_0} \frac{1 \gamma_0}{2} \right|$ the exploitation rate $g(m) = 2^m, m \in \mathbb{Z}_+$,

> the price offset $\eta \ge 2/(1 - \gamma_0)$

- for any valuation function $v \in \operatorname{Lip}_L([0,1]^d)$, discount $\gamma \leq \gamma_0$, distribution D and feature vectors $x_{1:T}$, the strategic regret is upper bounded:
 - SReg $(T, A, v, \gamma, x_{1:T}, D) \leq C \left(N_0 (T + N_0)^d \right)^{\frac{1}{d+1}} = \Theta(T^{\frac{d}{d+1}}),$
 - $C \coloneqq 2^d r (2\eta + 3 + L^{-1}) + 1$ and $N_0 \coloneqq [(4\eta + 6)L]^d$.

PELS: main properties and extensions

- Can be applied against myopic buyer ($\gamma = 0$) (setup of [Mao et al., NIPS'2018]) >
- PELS is horizon-independent (in contrast to [Mao et al., NIPS'2018])

What if the loss is symmetric?

- We can generalize the algorithm to classical online learning losses >
- For instance, we want to optimize regret of the form $\sum_{t=1}^{T} |v(x_t) p_t|$
- But interacting with the strategic buyer still >

d-1Slight modification of PELS has regret $O(T^{-d})$, which is tight for d > 1.

Thank you!

Alexey Drutsa Yandex

