



# Task Understanding From Confusing Multi-task Data

Xin SU Tsinghua University



Yizhou JIANG Tsinghua University



Shangqi GUO Tsinghua University



Feng CHEN Tsinghua University



### **Motivation: From Narrow AI to AGI**

□ Narrow AI: A specific task in the determined environment.



AGI Problem: How can we learn task concept from original raw data?

# **Confusing Supervised Learning (CSL)**

□ Without task annotation: Mapping conflicts between multi-task



□ CSL: Learning task concepts by reducing mapping conflicts

$$R(g,h) = \int_{x} \sum_{j,k} (f_j(x) - \underbrace{g_k(x)}_{\text{Mapping Function}})^2 \underbrace{h(x, f_j(x), g_k)}_{\text{Deconfusing Function}} p(f_j) p(x) \, \mathrm{d}x$$

#### **Method: CSL-Net**



Mapping-Net Training

**Deconfusing-Net Training** 

### **Motivation: From Narrow AI to AGI**

□ AI Success: Exceeded human-level performance on various problems.



□ Narrow AI: A specific task in the determined environment.

#### **Motivation: From Narrow AI to AGI**



#### AGI Problem: How can we learn task concept from original raw data?

# **Confusing Data**

- □ Multi-tasks cannot be represented by a single mapping function.
- □ Task understanding is vital for multi-task learning.

**Confusing Data:** Multi-task data without Task Annotation



#### **Comparison of Existing Methods**



Supervised Learning & Latent Variable Learning: Mapping Confusing.
Multi-Task Learning: Task annotation is needed.

**D** Multi-Label Learning: Multiple labels are allocated.

Confusing Supervised Learning: No task annotation or samples allocation.

8

## **Confusing Supervised Learning (CSL)**

□ Without task annotation: Mapping conflicts between multi-task



#### Data De-confuse

#### Learning Objective: Risk Functional of CSL

| Model              | Traditional Supervised Learning                                                                                              | Confusing Supervised Learning                                                                                                                                                   |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risk<br>Functional | $R(g) = \int_{x} \sum_{\substack{j=1 \\ \text{Confusing Multiple Mappings}}}^{n} (f_j(x) - g(x))^2 p(f_j) p(x)  \mathrm{d}x$ | $R(g,h) = \int_{x} \sum_{j,k} (f_j(x) - \underbrace{g_k(x)}_{\text{Mapping Function}})^2 \underbrace{h(x, f_j(x), g_k)}_{\text{Deconfusing Function}} p(f_j) p(x)  \mathrm{d}x$ |
| Solution           | $g^{*}(x) = \sum_{j=1}^{n} p(f_{j})f_{j}(x) = \bar{f}(x).$ $\min R(g^{*}) > 0$                                               | $h^{*}(x, f_{j}(x), g_{k}) = I[j = k]$<br>$g_{k}^{*}(x) = f_{k}(x), \ k = 1,, n$<br>$\min R(g^{*}, h^{*}) = 0$                                                                  |





#### **Feasibility:** Loss $\rightarrow$ 0

□ Wrong allocation of confusing samples leads to unavoidable loss.



□ Task concept driven by global loss: Empirical risk should go towards 0!

### **Training Target & CSL-Net**

**D** Optimization Target:

$$\min_{g,h} R_e = \sum_{i=1}^{m} \sum_{k=1}^{n} (y_i - g_k(x_i))^2 \cdot h(x_k, y_k; g_k)$$

**D** Expected Result:  $h^*(x, f_j(x), g_k) = I[j = k]$   $g_k^*(x) = f_k(x), \ k = 1, ..., n$ 

#### **Constraint:**

The output of Deconfusing-Net is one-hot!

**D** Difficulty:

Approximation of Softmax leads to a trivial solution.

Joint BP is not available.





Mapping-Net Training

**Deconfusing-Net Training** 

#### **Experiment: Function Regression**



□ Supervised learning fails to fit multiple functions.

- □ Incorrect task number leads to confusing fitting results.
- CSL-Net learns reasonable task concepts and complete multi-task mapping.



Results in the training process

#### **Experiment: Pattern Recognition**

□ Each sample represents the classification result of only one task.

- **T**wo Learning Goal:
  - Task Understanding
  - Classification of Multi-Task
- **D** Two Evaluation Metrics:
  - Task Understanding
  - Classification of Multi-Task

$$\alpha_T(j) = \max_k \frac{1}{m} \sum_{i=1}^m I[h(x_i, y_i; f_k), \tilde{h}(x_i, y_i; f_j)]$$
$$\alpha_L(j) = \max_k \frac{1}{m} \sum_{i=1}^m 1 - \frac{|g_k(x_i) - f_j(x_i)|}{|f_i(x_i)|}$$

#### **Experiment: Pattern Recognition**

□ Results on two confusing supervised datasets.



#### Table 1. Accuracy of Pattern Recognition Experiments.

| Learning Methods  |                         | Colorful-MNIST                                                            |                   |                   | Kaggle Fashion Product |                   |                   |                   |                   |                   |                        |
|-------------------|-------------------------|---------------------------------------------------------------------------|-------------------|-------------------|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|
|                   |                         | $\overline{ \begin{array}{c} \alpha_T(1) \\ (\mathrm{Cor}) \end{array} }$ | $lpha_T(2)$ (Num) | $lpha_L(1)$ (Cor) | $lpha_L(2)$ (Num)      | $lpha_T(1)$ (Gen) | $lpha_T(2)$ (Cat) | $lpha_T(3)$ (Cor) | $lpha_L(1)$ (Gen) | $lpha_L(2)$ (Cat) | $\alpha_L(3)$<br>(Cor) |
| Confusing<br>Data | Trad SL<br>Pseudo-Label | /                                                                         | /                 | 39.25<br>36.57    | 52.50<br>50.01         | /                 | /                 | /                 | 23.59<br>20.74    | 42.64<br>33.41    | 29.17<br>26.30         |
|                   | SMiLE                   | /                                                                         | /                 | 12.94             | 19.98                  | ,                 | ,                 | ,                 | 16.04             | 32.74             | 18.41                  |
|                   | CSL                     | 98.24                                                                     | 99.02             | 99.32             | 97.18                  | 98.42             | 99.16             | 98.90             | 93.25             | <b>97.8</b> 7     | 90.84                  |
| Task<br>Annotated | Trad MT<br>ML-LOC       | 99.48<br>99.57                                                            | 99.61<br>99.58    | 99.24<br>99.66    | 98.15<br>98.62         | 99.01<br>99.12    | 99.43<br>98.92    | 99.17<br>99.25    | 92.91<br>94.54    | 97.82<br>98.63    | 91.64<br>94.12         |

#### **Experiment: Pattern Recognition**

#### □ Feature Visualization of Deconfusing Net.

onfusing Samples



□ Deconfusing Net could separate confusing samples to reasonable task groups.

### Conclusion

**A novel learning problem** for general raw data:

- Task annotation is unknown in natural raw data.
- Understanding task concept from raw data (confusing data).
- □ A novel learning paradigm: Confusing Supervised Learning
  - **Deconfusing Function**: Samples allocation for tasks
  - Mapping Function: Multi-task mappings.
  - Global Risk Functional: Over all risk of representation for raw data.

#### □ A novel network: CSL-Net

- Algorithm of alternating two-stage training to realize the task constraint.
- □ A novel application: learning system towards general intelligence.
  - The agent autonomously defines task concepts and learns multi-task mapping without manual task annotation.





# Thanks!

# Xin Su, Tsinghua University suxin16@mails.tsinghua.edu.cn