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𝒌-submodular maximization s.t. size constraint

➢ 𝑘-submodular function is a generalization of submodular function

❑ Submodular set function: input is a single subset 𝑉
𝑓 𝑋 + 𝑓 𝑌 ≥ 𝑓 𝑋 ∪ 𝑌 + 𝑓(𝑋 ∩ 𝑌)

❑ 𝑘-submodular function: input is 𝑘 disjoint subsets of 𝑉
𝑓 𝐱 + 𝑓 𝐲 ≥ 𝑓 𝐱 ⊔ 𝐲 + 𝑓(𝐱 ⊓ 𝐲)

▪ 𝐱 = (𝑋1, … , 𝑋𝑘) and 𝐲 = (𝑌1, … , 𝑌𝑘)

▪ 𝐱 ⊔ 𝐲 = (𝑍1, … , 𝑍𝑘) where 𝑍𝑖 = 𝑋𝑖 ∪ 𝑌𝑖 ∖ 𝑗≠𝑖ڂ) 𝑋𝑗 ∪ 𝑌𝑗)

▪ 𝐱 ⊓ 𝐲 = (𝑋1 ∩ 𝑌1, … , 𝑋𝑘 ∩ 𝑌𝑘)

➢ 𝑘-submodular maximization s.t. size constraint (M𝒌SC)

❑ 𝑉 – a finite set of elements, 𝐵 – a positive integer.

❑ 𝑘 + 1 𝑉 - a family of 𝑘 disjoint subsets of 𝑉

❑ 𝑓: 𝑘 + 1 𝑉 → ℝ+ - a 𝑘-submodular function.

Find 𝐬 = (𝑆1, … , 𝑆𝑘) s.t.
𝐬 = 𝑖≤𝑘ڂ 𝑆𝑖 ≤ 𝐵 that 

maximizes 𝑓(𝐬)



𝒌-submodular maximization s.t. size constraint

➢ Applications:

❑ Influence maximization with 𝑘 topics/products

❑ Sensor placement with 𝑘 kinds of sensors

❑ Coupled Feature Selection.

➢ Existing solutions (*)

❑ Greedy: 2 approximation ratio, 𝑂(𝑘𝑛𝐵) query complexity

❑ “Lazy” Greedy: 2 approximation ratio, 𝑂(𝑘 𝑛 − 𝐵 log𝐵 log
𝐵

𝛿
) query 

complexity with probability at least 1 − 𝛿

(*) Ohsaka, Naoto, and Yuichi Yoshida. "Monotone k-submodular function maximization with size 
constraints." Advances in Neural Information Processing Systems. 2015.



Practical Challenges

➢ Noisy evaluation.

❑ In many applications (e.g. Influence Maximization), obtaining exact value for 
𝑓(𝐬) is impractical.

❑ 𝑓 can only be queried through a noisy version 𝐹

1 − 𝜖 𝑓 𝐬 ≤ 𝐹 𝐬 ≤ 1 + 𝜖 𝑓(𝐬) for all 𝐬 ∈ 𝑘 + 1 𝑉

➢ Streaming.

❑ Algorithms are required to take only one single pass over 𝑉

▪ Produce solutions in a timely manner.

▪ Avoid excessive storage in memory.



Our contribution

➢ Two streaming algorithms for MkSC – DStream & RStream

❑ Take only 1 single scan over 𝑉

❑ Access 𝐹 instead of 𝑓

❑ Performance guarantee:

▪ Approximation ratio 𝑓 𝐬 /𝑓(𝐨):  𝐨 - optimal solution.

▪ Query and memory complexity

➢ Experimental Evaluation

❑ Influence maximization with 𝑘 topics.

❑ Sensor placement with 𝑘 kinds of sensor.



DStream

➢ Obtain 𝑜 such that 𝑓 𝑜 ≥ 𝑜 × 𝐵 ≥ 𝑓 𝑜 /(1 + 𝛾)

❑ Using lazy estimation (*)

➢ For a new element 𝑒, if 𝒔 < 𝐵

(*) Badanidiyuru, Ashwinkumar, et al. "Streaming submodular maximization: Massive data summarization on the 
fly." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014.
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𝑓 𝐬 ⊔ 𝑒, 𝑖



DStream’s performance guarantee 

➢ 𝐱 = (𝑋1, … , 𝑋𝑘) can also be understood as a vector 𝐱: 𝑉 → [𝑘]

𝑒1 𝑒2 𝑒3 … … 𝑒𝑗 … … … …

1 0 4 … … 𝑖 … … … …x

𝐱 𝑒 = ቊ
𝑖 if 𝑒 ∈ 𝑋𝑖
0 if 𝑒 ∉ 𝑖𝑋𝑖ڂ



DStream’s performance guarantee 

➢ 𝐬0, 𝐬1, … , 𝐬𝑡 - sequence of obtained solutions

❑ 𝐬𝑖 - obtained solution after adding 𝑖 elements ( 𝒔𝑖 = 𝑖) 

➢ Construct a sequence 𝐨0, 𝐨1, … , 𝐨𝑡

𝐨𝑖 = (𝐨 ⊔ 𝐬𝑖) ⊔ 𝐬𝑖

1 0 2 3 0 0 0 0

2 1 2 0 0 3 0 1

𝐬𝑖

𝐨

1 1 2 3 0 3 0 1𝐨𝑖



DStream’s performance guarantee 

➢ If in the end 𝐬 = 𝐵

𝑓 𝐬 ≥
1 − 𝜖

1 + 𝜖

𝑓(𝐨)

1 + 𝛾 𝑀

𝐬0 𝐨0

𝐬1 𝐨2

𝐬2 𝐨2

𝐬3 𝐨3

𝐬4 𝐨4



DStream’s performance guarantee 

➢ If in the end 𝐬 = 𝑡 < 𝐵, with 𝑓 is monotone.

❑ Establish recursive relationship between 
𝑜𝑗 , 𝑠𝑗

𝑓 𝐨𝑗−1 + 𝑓 𝐬𝑗−1 ≤ 𝑓 𝐨𝑗 +
1 + 𝜖

1 − 𝜖
𝑓(𝐬𝑗)

❑ Bound 𝑓 𝐨 − 𝑓(𝐨𝑡) (∗)

𝑓 𝐨 − 𝑓 𝐨𝑡 ≤
1 + 𝜖 + 2𝐵𝜖

1 − 𝜖
𝑓(𝐬)

❑ Bound 𝑓 𝐨𝑡 − 𝑓(𝐬) (∗∗)

𝑓 𝐨𝑡 − 𝑓 𝐬 ≤
1

𝑀
𝑓 𝐨 +

2𝐵𝜖

1 − 𝜖
𝑓(𝐬)

❑ Discard 𝑓(𝐨𝑡) by combining ∗ and (∗∗)

𝑓 𝐨 ≤
𝑀

𝑀 − 1

2 + 4𝐵𝜖

1 − 𝜖
𝑓(𝐬)

𝐬0 𝐨0

𝐬1 𝐨2

𝐬2 𝐨2

𝐬3 𝐨3



DStream’s performance guarantee 

➢ If in the end 𝐬 = 𝑡 < 𝐵, with 𝑓 is 
non-monotone.

❑ 𝑓 is pairwise monotone
Δ𝑒,𝑖𝑓 𝐱 + Δ𝑒,𝑗𝑓 𝐱 ≥ 0

❑ Using the same framework as the 
monotone case but with different 
“math”

𝑓 𝐨 ≥
𝑀

𝑀 − 1

(1 + 𝜖)(3 + 3𝜖 + 6𝐵𝜖)

1 − 𝜖 2
𝑓(𝐬)

𝐬0 𝐨0

𝐬1 𝐨2

𝐬2 𝐨2

𝐬3 𝐨3



DStream

Lazy estimation to obtain 𝑜
• 𝑓 𝐨 ∈ [Δ𝑙 , 𝐵 × Δ𝑢]
• 𝑜 can be obtained by a value of 1 + 𝛾 𝑗 ∈

[
Δ𝑙

𝐵
, 𝑀(1 + 𝜖)Δ𝑢]

Query complexity

𝑂(
𝑛𝑘

𝛾
log(

1 + 𝜖 (1 + 𝛾)

1 − 𝜖
𝐵𝑀))

Memory complexity

𝑂(
𝐵

𝛾
log(

1 + 𝜖 (1 + 𝛾)

1 − 𝜖
𝐵𝑀))



DStream

Approximation ratio
1 + 𝜖

1 − 𝜖
min

𝑥∈(1,𝑀]
max(𝑎 𝑥 , 𝑏(𝑥))

If 𝑓 is monotone

• 𝑎 𝑥 =
(1+𝛾)(1+𝜖)

1−𝜖
𝑥

• 𝑏 𝑥 =
2+4𝐵𝜖

1−𝜖

𝑥

𝑥−1

If 𝑓 is non-monotone

• 𝑎 𝑥 =
(1+𝛾)(1+𝜖)

1−𝜖
𝑥

• 𝑏 𝑥 =
(1+𝜖)(3+3𝜖+6𝐵𝜖)

1−𝜖 2

𝑥

𝑥−1



DStream’s weakness

𝑒
𝑆2

𝑆3

Putting 𝑒 to 𝑆𝑖 if  
𝐹 𝐬⊔ 𝑒,𝑖

1−𝜖
≥ 𝐬 + 1

𝑜

𝑀

What if 𝑓 𝐬 ≥ 𝐬 + 1
𝑜

𝑀
? 

• 𝑒 may have no contribution to 𝐬
• Better consider marginal gain



RStream

➢ For a new element 𝑒, if 𝒔 < 𝐵

𝑒

𝑆1

𝑆2

𝑆3

𝑑𝑖 =
𝐹(𝐬 ⊔ (𝑒, 𝑖))

1 − 𝜖
−
𝐹(𝐬)

1 + 𝜖
• 𝑑𝑖 is an upper bound on Δ𝑒,𝑖𝑓(𝐬)



RStream

➢ For a new element 𝑒, if 𝒔 < 𝐵

𝑒

𝑆1

𝑆2

𝑆3

𝑑𝑖 =
𝐹(𝐬 ⊔ (𝑒, 𝑖))

1 − 𝜖
−
𝐹(𝐬)

1 + 𝜖
• 𝑑𝑖 is an upper bound on Δ𝑒,𝑖𝑓(𝐬)

• Filter out 𝑆𝑖 that 𝑑𝑖 ≤
𝑜

𝑀

• 𝑑𝑖 = 0 if 𝑑𝑖 ≤
𝑜

𝑀

• Otherwise 𝑑𝑖 keeps its value
• Randomly put 𝑒 into 𝑆𝑖 with probability

𝑑𝑖
𝑇−1/

𝑗

𝑑𝑗
𝑇−1

• 𝑇 = | 𝑗 ∶ 𝑑𝑗 ≥
𝑜

𝑀
|



RStream

𝑒

𝑆1

𝑆2

𝑆3

What if 𝐹 𝐬 ≈ 𝑓 𝐬 = 𝑓(𝐬 ⊔ (𝑒, 𝑖)) ≈ 𝐹(𝐬 ⊔ (𝑒, 𝑖))

𝑑𝑖 =
𝐹(𝐬 ⊔ (𝑒, 𝑖))

1 − 𝜖
−
𝐹(𝐬)

1 + 𝜖
• 𝑑𝑖 is an upper bound on Δ𝑒,𝑖𝑓(𝐬)

• 𝑒 has no contribution

• But 𝑑𝑖 ≈
2𝜖

1−𝜖2
𝑓 𝐬 ≥

𝑜

𝑀



RStream

𝑒

𝑆1

𝑆2

𝑆3

𝑑𝑖 =
𝐹(𝐬 ⊔ (𝑒, 𝑖))

1 − 𝜖
−
𝐹(𝐬)

1 + 𝜖
• 𝑑𝑖 is an upper bound on Δ𝑒,𝑖𝑓(𝐬)

(Denoise) Run multiple instances, each instance assumes 
𝐹 is less noisy than it is. 

𝒅𝒊,𝝐′ =
𝐹(𝐬 ⊔ (𝑒, 𝑖))

1 − 𝝐′
−

𝐹(𝐬)

1 + 𝝐′

where 𝜖′ = 0,
𝜖

𝜂−1
,
2𝜖

𝜂−1
, … , 𝜖

𝜂 – adjustable parameter, controlling number of instances



(Denoise) Run multiple instances, each
instance assumes 𝐹 is less noisy than it
actually is.



Lazy estimation: Δ𝑢 is much larger than the 
one in DStream in order to bound 𝑑𝑖s’ value.

Query complexity

𝑂(
𝑛𝑘𝜂

𝛾
log(

( 1 + 𝜖 2 + 4𝐵𝜖)(1 + 𝛾)

1 − 𝜖 2
𝐵𝑀))

Memory complexity

𝑂(
𝜂𝐵

𝛾
log(

( 1 + 𝜖 2 + 4𝐵𝜖)(1 + 𝛾)

1 − 𝜖 2
𝐵𝑀))



Approximation ratio
1 + 𝜖

1 − 𝜖
min

𝑥∈(1,𝑀]
max(𝑎 𝑥 , 𝑏(𝑥))

If 𝑓 is monotone
• 𝑎 𝑥 =

(1+𝛾)(1+𝜖+2𝐵𝜖)

1−𝜖
𝑥

• 𝑏 𝑥 = (
1+𝜖 2+4𝐵𝜖

1−𝜖2
1 −

1

𝑘
+ 1)

𝑘𝑥

𝑘𝑥−𝑘−1

If 𝑓 is non-monotone
• 𝑎 𝑥 =

(1+𝛾)(1+𝜖+2𝐵𝜖)

1−𝜖
𝑥

• 𝑏 𝑥 =
3𝑘−2 1+𝜖 2+ 8𝑘−8 𝐵𝜖

1−𝜖 2

𝑥

𝑘𝑥−𝑘−2



Experimental Evaluation

➢ Influence Maximization with 𝑘 topics

❑ 𝑘 influence spread processes occur independently in a social network.

❑ Find 𝑆1, … , 𝑆𝑘 that maximize the number of active users

▪ An active user is a user who is activated by at least 1 topics.

▪ 𝑆𝑖 - a seed set of users who start spreading topic 𝑖

▪ 𝑆1 ∪⋯∪ 𝑆𝑘 ≤ 𝐵

➢ Social network: Facebook dataset from SNAP
❑ Leskovec, Jure, and Rok Sosič. "Snap: A general-purpose network analysis and graph-mining 

library." ACM Transactions on Intelligent Systems and Technology (TIST) 8.1 (2016): 1-20.

➢ Influence model: Linear Threshold
❑ Kempe, David, Jon Kleinberg, and Éva Tardos. "Maximizing the spread of influence through a 

social network." Proceedings of the ninth ACM SIGKDD international conference on Knowledge 
discovery and data mining. 2003.



Influence Maximization with 𝒌 topics

➢ Compared algorithms
❑ Greedy (Ohsaka, Naoto, and Yuichi Yoshida et al. NIPS’15)

❑ IM: randomly select 1 topic and solve classical Influence Maximization problem

❑ SGr: simple streaming, pick 𝑒 with prob. 
𝐵

𝑛
and put to 𝑆𝑖 that maximizes 𝐹(𝑠 ⊔ (𝑒, 𝑖))



Influence Maximization with 𝒌 topics

➢ DStream and RStream (𝜂 = 2) 

❑ Returned solutions approximately to Greedy, outperformed IM in most cases.

❑ Outperformed Greedy in # queries by a huge margin.



Influence Maximization with 𝒌 topics

➢ Denoise step helped RStream improve performance.

❑ 𝜂 = 1 causes RStream terminate prematurely and perform worse than DStream

❑ 𝜂 = 2 helps RStream improve solution quality but take 4 times more queries 
than DStream. 



Influence Maximization with 𝒌 topics

➢ The larger 𝜸 is, the lower solution quality and the fewer queries the 
algorithms obtained. 

➢ The smaller M is, the lower solution quality and the fewer queries 
the algorithms obtained. 



Conclusion

➢ We propose 2 streaming algorithms with theoretical performance 
guarantee to solve MkSC under noise.

➢ In comparison with Greedy, our algorithms

❑ Take much fewer queries

❑ Obtain comparable solutions in term of quality.

➢ Thanks! Questions?  

❑ lan.nguyen@ufl.edu


