Provably Convergent TwoTimescale Off-Policy Actor-Critic with Function Approximation

Shangtong Zhang ${ }^{1}$, Bo Liu², Hengshuai Yao³, Shimon Whiteson ${ }^{1}$
${ }^{1}$ University of Oxford
${ }^{2}$ Auburn University
${ }^{3}$ Huawei

Preview

- Off-policy control under the excursion objective $\sum_{s} d_{\mu}(s) v_{\pi}(s)$
- The first provably convergent two-timescale off-policy actor-critic algorithm with function approximation
- New perspective for Emphatic TD (Sutton et al, 2016)
- Convergence of Regularized GTD-style algorithms under a changing target policy

The excursion objective is commonly used for off-policy control

- $J(\pi)=\sum_{s} d_{\mu}(s) i(s) v_{\pi}(s)$
d_{μ} : stationary distribution of the behaviour policy
v_{π} : value function of the target policy
$i: \mathcal{S} \rightarrow[0, \infty)$, the interest function (Sutton et al, 2016)

Off-policy policy gradient theorem gives the exact the gradient (Imani et al, 2018)

- $\nabla J(\pi)=\sum_{s} \bar{m}(s) \sum_{a} q_{\pi}(s, a) \nabla \pi(a \mid s)$ $\bar{m} \doteq\left(I-\gamma P_{\pi}^{\top}\right)^{-1} D i \in \mathbb{R}^{N_{s}}$
$D=\operatorname{diag}\left(d_{\mu}\right)$

Rewriting the gradients gives a taxonomy of previous algorithms

- $\nabla_{\theta} J(\pi)=\mathbb{E}_{s \sim d_{\mu}, a \sim \mu(\cdot \mid s)}\left[m_{\pi}(s) \rho_{\pi}(s, a) q_{\pi}(s, a) \nabla_{\theta} \log \pi(a \mid s)\right]$ $m_{\pi} \doteq D^{-1}\left(I-\gamma P_{\pi}^{\top}\right)^{-1} D i$ (emphasis)

1. Ignoring $m_{\pi}(s)$ (Degris et al, 2012)
2. Use followon trace to approximate $m_{\pi}(s)$ (Imani et al, 2018)
3. Learn $m_{\pi}(s)$ with function approximation (Ours)

Ignoring emphasis is theoretically justified only in tabular setting

- Gradient Estimator (Degris et al, 2012):

$$
\rho_{\pi}\left(S_{t}, A_{t}\right) q_{\pi}\left(S_{t}, A_{t}\right) \nabla_{\theta} \log \pi\left(A_{t} \mid S_{t}\right)
$$

- Off-Policy Actor Critic (Off-PAC) Extensions: Off-policy DPG, DDPG, ACER, Off-policy EPG, TD3, IMPALA
- Off-PAC is biased even with linear function approximation (Degris et al, 2012, Imani et al, 2018, Maei et al, 2018, Liu et al, 2019)

Followon trace is unbiased only in a limiting sense

- Gradient Estimator (Imani et al, 2018):
$M_{t} \rho_{\pi}\left(S_{t}, A_{t}\right) q_{\pi}\left(S_{t}, A_{t}\right) \nabla_{\theta} \log \pi\left(A_{t} \mid S_{t}\right)$
$M_{t} \doteq i\left(S_{t}\right)+\gamma \rho_{t-1} M_{t-1}$ (followon trace)
Assuming π is FIXED, $\lim _{t \rightarrow \infty} \mathbb{E}_{\mu}\left[M_{t} \mid S_{t}=s\right]=m_{\pi}(s)$
- M_{t} is a scalar, but m_{π} is a vector!

Emphasis is the fixed point of a Bellman-like operator
 - $\hat{\mathbb{T}} y \doteq i+\gamma D^{-1} P_{\pi}^{\top} D y$

- $\hat{\mathbb{W}}$ is a contraction mapping w.r.t. some weighted maximum norm (for any $\gamma<1$)
- The emphasis m_{π} is its fixed point

We propose to learn emphasis based on $\hat{\mathbb{Z}}$

- A semi-gradient update based on $\hat{\mathbb{V}}$
- Gradient Temporal Difference Learning (GTD) MSPBE: $L(\nu) \doteq\|\Pi \pi v-v\|_{D}^{2} \quad(v=X \nu)$
- Gradient Emphasis Learning (GEM)

$$
L(w) \doteq||\Pi \hat{\mathbb{T}} m-m||_{D}^{2} \quad(m=X w)
$$

- $\nabla_{\theta} J(\pi)=\mathbb{E}_{s \sim d_{\mu}, a \sim \mu(\cdot \mid s)}\left[m_{\pi}(s) \rho_{\pi}(s, a) q_{\pi}(s, a) \nabla_{\theta} \log \pi(a \mid s)\right]$

Regularized GTD-style algorithms converge under a changing policy

- TD converges under a changing policy (Konda's thesis) But those arguments can NOT be used to show the convergence of GTD
- Regularization has to be used for GTD-style algorithms GEM: $L(m) \doteq\|\Pi \hat{\mathbb{U}} X w-X w\|_{D}^{2}+\|w\|^{2}$ GTD: $L(v) \doteq\|\Pi \pi X \nu-X \nu\|_{D}^{2}+\|\nu\| \|^{2}$
- Regularization in GTD:
- Optimization perspective under a fixed π :

Mahadevan et al. (2014), Liu et al., (2015), Macua et al., (2015), Yu (2017), Du et al. (2017)

- Stochastic approximation perspective under a changing π

The Convergence Off-Policy Actor-Critic (COF-PAC) algorithm

- $\nabla_{\theta} J(\pi)=\mathbb{E}_{s \sim d_{\mu}, a \sim \mu(\cdot \mid s)}\left[m_{\pi}(s) \rho_{\pi}(s, a) q_{\pi}(s, a) \nabla_{\theta} \log \pi(a \mid s)\right]$

$$
L(v) \doteq\|\Pi \mathbb{X} X \nu-X \nu\|_{D}+\|\nu\|^{2}
$$

$$
L(w) \doteq\|\Pi \hat{\mathbb{U}} X w-X w\|_{D}+\|w\|^{2}
$$

- Two-timescale instead of bi-level optimization like SBEED
- COF-PAC visits a neighbourhood of a stationary point of $J(\pi)$ infinitely many times

GEM approximates emphasis better than followon trace in Baird's counterexample

GEM-ETD doss better policy evaluation than ETD in Baird's counterexample

- ETD: $\nu_{t+1} \leftarrow \nu_{t}+\alpha M_{t} \rho_{t}\left(R_{t+1}+\gamma x_{t+1}^{\top} \nu_{t}-x_{t}^{\top} \nu_{t}\right) x_{t}^{\top}$
- GEM-ETD: $\nu_{t+1} \leftarrow \nu_{t}+\alpha_{2}\left(w_{t}^{\top} x_{t}\right) \rho_{t}\left(R_{t+1}+\gamma x_{t+1}^{\top} \nu_{t}-x_{t}^{\top} \nu_{t}\right) x_{t}^{\top}$

Averaged over 30 runs, mean + std

COF-PAC does better control than ACE in Reacher

Averaged over 30 runs, mean + std

Thanks

- Code and Dockerfile are available at https://github.com/ShangtongZhang/DeepRL

