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Epidemic Control

A DM iteratively:

1. Pick a measure to contain the virus.

2. See the corresponding outcome.

Goal: Minimize the total infected cases.

Challenges:

I Uncertainty: effectiveness of each measure is unknown.

I Bandit feedback: no feedback for un-chosen measures.

I Non-stationarity: virus might mutate throughout.
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Epidemic Control

The DM’s action could have long-term impact.

I Quarantine lockdown stem the spread of virus to elsewhere,
but also delayed key supplies from getting in.
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Model

Model epidemic control by a Markov decision process (MDP)
(Nowzari et al. 15, Kiss et al. 17).

For each time step t = 1, . . . ,T ,

I Observe the current state st = {1, 2}, and receive a reward.
For example

r(1) = 1 and r(2) = 0.

I Pick an action at ∈ {B,G}, and transition to the next state
st+1 ∼ pt(·|st , at) (unknown).
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Model cont’d

I Task: Design a reward-maximizing policy π.

For every time step t : πt : {1, 2} → {B,G}

I Dynamic regret (Besbes et al. 15):

dym-regT = E

∑T
t=1 r(st( π∗︸︷︷︸

knows pt ’s

))

− E
[∑T

t=1 r(st(π))
]
.

I Variation budget:

‖p1 − p2‖+ ‖p2 − p3‖+ . . .+ ‖pT−1 − pT‖ ≤ Bp.
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Diameter of a MDP cont’d
I If the DM leaves state 1, she has to come back to state 1 to

collect samples.

I The longer it takes to commute between states, the harder
the learning process.

Definition ((Jaksch et al. 10) Informal)

Diameter = max{E[min. time(1→ 2)],E[min. time(2→ 1)]}

Example. Diameter = max{1/0.8, 1/0.1} = 10.
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Existing Works

Stationary Non-stationary

Multi-armed bandit OFU* Forgetting + OFU†
Reinforcement learning OFU‡ ? (Forgetting + OFU)

* Auer et al. 03

†Besbes et al. 14, Cheung et al. 19

‡Jaksch et al. 10, Agrawal and Jia 20

7 / 18



UCB for Stationary RL

1. Suppose at time t,

Nt(1,B) = 10 : 5 × (1,B)→ 1, 5 × (1,B)→ 2

Nt(2,B) = 10 : 5 × (2,B)→ 1, 5 × (2,B)→ 2

Empirical state transition distribution:

2. Confidence intervals:

‖p̂t(·|1,B)− p(·|1,B)‖ ≤ ct(1,B) := C/
√

10

‖p̂t(·|2,B)− p(·|2,B)‖ ≤ ct(2,B) := C/
√

10

8 / 18



UCB for Stationary RL

1. Suppose at time t,

Nt(1,B) = 10 : 5 × (1,B)→ 1, 5 × (1,B)→ 2

Nt(2,B) = 10 : 5 × (2,B)→ 1, 5 × (2,B)→ 2

Empirical state transition distribution:

2. Confidence intervals:

‖p̂t(·|1,B)− p(·|1,B)‖ ≤ ct(1,B) := C/
√

10

‖p̂t(·|2,B)− p(·|2,B)‖ ≤ ct(2,B) := C/
√

10

8 / 18



UCB for Stationary RL

1. Suppose at time t,

Nt(1,B) = 10 : 5 × (1,B)→ 1, 5 × (1,B)→ 2

Nt(2,B) = 10 : 5 × (2,B)→ 1, 5 × (2,B)→ 2

Empirical state transition distribution:

2. Confidence intervals:

‖p̂t(·|1,B)− p(·|1,B)‖ ≤ ct(1,B) := C/
√

10

‖p̂t(·|2,B)− p(·|2,B)‖ ≤ ct(2,B) := C/
√

10

8 / 18



UCB for Stationary RL

1. Suppose at time t,

Nt(1,B) = 10 : 5 × (1,B)→ 1, 5 × (1,B)→ 2

Nt(2,B) = 10 : 5 × (2,B)→ 1, 5 × (2,B)→ 2

Empirical state transition distribution:

2. Confidence intervals:

‖p̂t(·|1,B)− p(·|1,B)‖ ≤ ct(1,B) := C/
√

10

‖p̂t(·|2,B)− p(·|2,B)‖ ≤ ct(2,B) := C/
√

10

8 / 18



UCB for Stationary RL

3. UCB of reward: find the p̊ that maximizes Pr(visiting state 1)
within the confidence interval.

4. Execute the optimal policy w.r.t. the UCB until some
termination criteria are met.
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UCB for RL cont’d
Regret analysis:

I LCB of diameter: find the p̊ that maximizes Pr(commuting)
within the confidence interval.

I Regret ∝ LCB ×
(∑

(s,a) ct(s, a)
)

.

I Under stationarity, LCB of diameter ≤ Diameter(p).

Theorem

Denote D := Diameter(p), the regret of the UCB algorithm is
O(D
√
T ).

I Summary: UCB of reward + LCB of diameter ⇒ low regret.
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SWUCB for RL

According to (Cheung et al. 19):

I SWUCB for RL: UCB for RL with W most recent samples.

I The perils of drift: Under non-stationarity,

LCB of diameter � Diameter(ps)

for all s ∈ [T ].
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Perils of Non-Stationarity in RL
Non-stationarity: The DM faces time-varying environment.

Bandit feedback: The DM is not seeing everything.

Collected data: {(1,B)→ 1, (2,B)→ 2}

Empirical state transition p̂t :

Diameter explodes!
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Perils of Non-Stationarity in RL

But let’s still check the “LCB” of diameter:

I For a window size W , ct(1,B) and ct(2,B) can be as small as
Θ(1/

√
W ) (Cheung et al. 20).

I Hence, the “LCB” of diameter can be as large as Θ(
√
W ).

I Recall: diameters of p1 and p2 are 1� Θ(
√
W ).

I The “LCB” is no longer a valid LCB under non-stationarity.

I SWUCB incurs Θ(T ) dynamic regret.
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Confidence Widening

I This caveat stems from the estimation.

I We can refine the design principle of UCB.

I Confidence widening: increase each confidence interval by η.

I ct ≥ 0 =⇒Pr(commuting) ≥ η

I New “LCB” ≤ 1/η.
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Confidence Widening
Recall: Regret ∝ LCB ×[

∑
(s,a)(ct(s, a) + η)].

I If 1/η ≤ Diameter(pt), then LCB ≤ 1/η ≤ Diameter(pt).

I If 1/η ≥ Diameter(pt), then Pr(commuting) ≥ η for pt :

I Compare to p1 and p2 : a η variation is detected!
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The Blessing of More Optimism

Confidence widening ensures either we enjoy reasonable upper
bound for LCB or we consume η of variation budget.

Theorem

If we choose the optimal W and η w.r.t. Bp, the dynamic regret
bound for the SWUCB-CW algorithm is

Õ

(
DmaxB

1
4
p T

3
4

)
.
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Conclusion

Stationary Non-stationary

MAB OFU OFU + Forgetting

RL OFU Extra optimism + Forgetting

I An unfavorable “phase transition” from MAB (1 state) to RL
(≥ 2 states) for SWUCB.

I Blessing of more optimism: Provably low dynamic regret
for non-stationary RL.

I Parameter-free: Bandit-over-reinforcement learning (Cheung
et al. 20).
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Thank You!

rzhu@mit.edu

isecwc@nus.edu.sg, dslevi@mit.edu
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