Non-Stationary Reinforcement Learning

Ruihao Zhu

MIT IDSS

Joint work with Wang Chi Cheung (NUS) and David Simchi-Levi (MIT)

Epidemic Control

A DM iteratively:

- 1. Pick a measure to contain the virus.
- 2. See the corresponding outcome.

Goal: Minimize the total infected cases.

Epidemic Control

A DM iteratively:

- 1. Pick a measure to contain the virus.
- 2. See the corresponding outcome.
- Goal: Minimize the total infected cases.

Challenges:

- **Uncertainty:** effectiveness of each measure is unknown.
- **Bandit feedback:** no feedback for un-chosen measures.
- **Non-stationarity:** virus might mutate throughout.

Epidemic Control

The DM's action could have long-term impact.

Quarantine lockdown stem the spread of virus to elsewhere, but also delayed key supplies from getting in.

Q, Search	Bloomberg
Prognosis	
China Sacrifice World From Co	s a Province to Save the ronavirus
Bloomberg News February 5, 2020, 11:01 AM EST	
 Hubei province has seen 97% of all deaths from t 	the virus

Quarantine lockdown delayed key supplies from getting in

Model

Model epidemic control by a Markov decision process (MDP) (*Nowzari et al. 15, Kiss et al. 17*).

For each time step $t = 1, \ldots, T$,

Observe the current state s_t = {1,2}, and receive a reward. For example

$$r(1) = 1$$
 and $r(2) = 0$.

▶ Pick an action $a_t \in \{B, G\}$, and transition to the next state $s_{t+1} \sim p_t(\cdot|s_t, a_t)$ (unknown).

イロト 不得 トイヨト イヨト

Model

Model epidemic control by a Markov decision process (MDP) (*Nowzari et al. 15, Kiss et al. 17*).

For each time step $t = 1, \ldots, T$,

Observe the current state s_t = {1, 2}, and receive a reward. For example

$$r(1) = 1$$
 and $r(2) = 0$.

▶ Pick an action $a_t \in \{B, G\}$, and transition to the next state $s_{t+1} \sim p_t(\cdot|s_t, a_t)$ (unknown).

4/18

Model

Model epidemic control by a Markov decision process (MDP) (*Nowzari et al. 15, Kiss et al. 17*).

For each time step $t = 1, \ldots, T$,

Observe the current state s_t = {1,2}, and receive a reward. For example

$$r(1) = 1$$
 and $r(2) = 0$.

▶ Pick an action $a_t \in \{B, G\}$, and transition to the next state $s_{t+1} \sim p_t(\cdot|s_t, a_t)$ (unknown).

イロト 不得 トイヨト イヨト

Model cont'd

► Task: Design a reward-maximizing policy π . For every time step t: $\pi_t : \{1, 2\} \rightarrow \{B, G\}$

To every time step t. $\pi_t : \{1, 2\} \rightarrow \{D, C\}$

Dynamic regret (Besbes et al. 15):

dym-reg_T =
$$\mathbb{E}\left[\sum_{t=1}^{T} r(s_t(\underline{\pi_*}_{knows \ p_t's}))\right] - \mathbb{E}\left[\sum_{t=1}^{T} r(s_t(\pi))\right].$$

Variation budget:

 $||p_1 - p_2|| + ||p_2 - p_3|| + \ldots + ||p_{T-1} - p_T|| \le B_p.$

3

Model cont'd

Task: Design a reward-maximizing policy π .

For every time step t: $\pi_t: \{1,2\} \rightarrow \{B,G\}$

• Dynamic regret (Besbes et al. 15): $dym-reg_{T} = \mathbb{E}\left[\sum_{t=1}^{T} r(s_{t}(\underline{\pi}_{*}))\right] - \mathbb{E}\left[\sum_{t=1}^{T} r(s_{t}(\pi))\right].$

Variation budget: $||p_1 - p_2|| + ||p_2 - p_3|| + \ldots + ||p_{T-1} - p_T|| \le B_p.$

Model cont'd

Task: Design a reward-maximizing policy π .

For every time step t: $\pi_t: \{1,2\} \rightarrow \{B,G\}$

Dynamic regret (Besbes et al. 15):

dym-reg_T =
$$\mathbb{E}\left[\sum_{t=1}^{T} r(s_t(\underbrace{\pi_*}_{\text{knows } p_t's}))\right] - \mathbb{E}\left[\sum_{t=1}^{T} r(s_t(\pi))\right].$$

Variation budget:

 $||p_1 - p_2|| + ||p_2 - p_3|| + \ldots + ||p_{T-1} - p_T|| \le B_{\rho}.$

3

ヘロト ヘロト ヘビト ヘビト

If the DM leaves state 1, she has to come back to state 1 to collect samples.

- If the DM leaves state 1, she has to come back to state 1 to collect samples.
- The longer it takes to commute between states, the harder the learning process.

- If the DM leaves state 1, she has to come back to state 1 to collect samples.
- The longer it takes to commute between states, the harder the learning process.

Definition ((Jaksch et al. 10) Informal)

 $\mathsf{Diameter} = \mathsf{max}\{\mathbb{E}[\mathsf{min. time}(1 \rightarrow 2)], \mathbb{E}[\mathsf{min. time}(2 \rightarrow 1)]\}$

- If the DM leaves state 1, she has to come back to state 1 to collect samples.
- The longer it takes to commute between states, the harder the learning process.

Definition ((Jaksch et al. 10) Informal)

 $\mathsf{Diameter} = \mathsf{max}\{\mathbb{E}[\mathsf{min. time}(1 \rightarrow 2)], \mathbb{E}[\mathsf{min. time}(2 \rightarrow 1)]\}$

Example. Diameter = $max\{1/0.8, 1/0.1\} = 10$.

Existing Works

	Stationary	Non-stationary
Multi-armed bandit	OFU*	Forgetting + OFU†
Reinforcement learning	OFU‡	? (Forgetting + OFU)

* Auer et al. 03

†Besbes et al. 14, Cheung et al. 19

‡Jaksch et al. 10, Agrawal and Jia 20

1. Suppose at time t,

 $N_t(1, B) = 10:$ 5 \times $(1, B) \rightarrow 1,$ 5 \times $(1, B) \rightarrow 2$

1. Suppose at time t,

1. Suppose at time t,

Empirical state transition distribution:

$$\hat{p}_t$$
 0.5

1. Suppose at time t,

 $egin{aligned} N_t(1,B) &= 10: & 5 \ imes \ (1,B)
ightarrow 1, & 5 \ imes \ (1,B)
ightarrow 2 \ N_t(2,B) &= 10: & 5 \ imes \ (2,B)
ightarrow 1, & 5 \ imes \ (2,B)
ightarrow 2 \end{aligned}$

Empirical state transition distribution:

2. Confidence intervals:

 $\|\hat{p}_t(\cdot|1,B) - p(\cdot|1,B)\| \le c_t(1,B) := C/\sqrt{10}$ $\|\hat{p}_t(\cdot|2,B) - p(\cdot|2,B)\| \le c_t(2,B) := C/\sqrt{10}$

3. UCB of reward: find the p that maximizes Pr(visiting state 1) within the confidence interval.

4. Execute the optimal policy w.r.t. the UCB until some termination criteria are met.

3. UCB of reward: find the p that maximizes Pr(visiting state 1) within the confidence interval.

4. Execute the optimal policy w.r.t. the UCB until some termination criteria are met.

Regret analysis:

LCB of diameter: find the p that maximizes Pr(commuting) within the confidence interval.

• Regret
$$\propto$$
 LCB $\times \left(\sum_{(s,a)} c_t(s,a) \right)$.

▶ Under stationarity, LCB of diameter ≤ Diameter(*p*).

Theorem

Denote D := Diameter(p), the regret of the UCB algorithm is $O(D\sqrt{T})$.

Regret analysis:

LCB of diameter: find the p that maximizes Pr(commuting) within the confidence interval.

• Regret
$$\propto$$
 LCB $\times \left(\sum_{(s,a)} c_t(s,a) \right)$.

▶ Under stationarity, LCB of diameter ≤ Diameter(*p*).

Theorem

Denote D := Diameter(p), the regret of the UCB algorithm is $O(D\sqrt{T})$.

Regret analysis:

LCB of diameter: find the p that maximizes Pr(commuting) within the confidence interval.

• Regret
$$\propto$$
 LCB $\times \left(\sum_{(s,a)} c_t(s,a) \right)$.

▶ Under stationarity, LCB of diameter ≤ Diameter(*p*).

Theorem

Denote D := Diameter(p), the regret of the UCB algorithm is $O(D\sqrt{T})$.

Regret analysis:

LCB of diameter: find the p that maximizes Pr(commuting) within the confidence interval.

• Regret
$$\propto$$
 LCB $\times \left(\sum_{(s,a)} c_t(s,a) \right)$.

▶ Under stationarity, LCB of diameter ≤ Diameter(*p*).

Theorem

Denote D := Diameter(p), the regret of the UCB algorithm is $O(D\sqrt{T})$.

Regret analysis:

LCB of diameter: find the p that maximizes Pr(commuting) within the confidence interval.

• Regret
$$\propto$$
 LCB $\times \left(\sum_{(s,a)} c_t(s,a) \right)$.

▶ Under stationarity, LCB of diameter ≤ Diameter(*p*).

Theorem

Denote D := Diameter(p), the regret of the UCB algorithm is $O(D\sqrt{T})$.

► Summary: UCB of reward + LCB of diameter ⇒ low regret.

SWUCB for RL

According to (Cheung et al. 19):

SWUCB for RL: UCB for RL with W most recent samples.

SWUCB for RL

According to (Cheung et al. 19):

- **SWUCB for RL:** UCB for RL with W most recent samples.
- > The perils of drift: Under non-stationarity,

LCB of diameter \gg Diameter(p_s)

for all $s \in [T]$.

Non-stationarity: The DM faces time-varying environment.

Non-stationarity: The DM faces time-varying environment.

Bandit feedback: The DM is not seeing everything.

Non-stationarity: The DM faces time-varying environment.

Bandit feedback: The DM is not seeing everything.

Non-stationarity: The DM faces time-varying environment.

Bandit feedback: The DM is not seeing everything.

Empirical state transition \hat{p}_t :

Non-stationarity: The DM faces time-varying environment.

Bandit feedback: The DM is not seeing everything.

Empirical state transition \hat{p}_t :

- For a window size W, $c_t(1, B)$ and $c_t(2, B)$ can be as small as $\Theta(1/\sqrt{W})$ (Cheung et al. 20).
- Hence, the "LCB" of diameter can be as large as $\Theta(\sqrt{W})$.
- **Recall:** diameters of p^1 and p^2 are $1 \ll \Theta(\sqrt{W})$.
- ▶ The "LCB" is no longer a valid LCB under non-stationarity.
- SWUCB incurs $\Theta(T)$ dynamic regret.

- For a window size W, $c_t(1, B)$ and $c_t(2, B)$ can be as small as $\Theta(1/\sqrt{W})$ (Cheung et al. 20).
- Hence, the "LCB" of diameter can be as large as $\Theta(\sqrt{W})$.
- **Recall:** diameters of p^1 and p^2 are $1 \ll \Theta(\sqrt{W})$.
- ▶ The "LCB" is no longer a valid LCB under non-stationarity.
- SWUCB incurs $\Theta(T)$ dynamic regret.

For a window size W, $c_t(1, B)$ and $c_t(2, B)$ can be as small as $\Theta(1/\sqrt{W})$ (Cheung et al. 20).

- Hence, the "LCB" of diameter can be as large as $\Theta(\sqrt{W})$.
- **Recall:** diameters of p^1 and p^2 are $1 \ll \Theta(\sqrt{W})$.
- ▶ The "LCB" is no longer a valid LCB under non-stationarity.
- SWUCB incurs $\Theta(T)$ dynamic regret.

- For a window size W, $c_t(1, B)$ and $c_t(2, B)$ can be as small as $\Theta(1/\sqrt{W})$ (Cheung et al. 20).
- Hence, the "LCB" of diameter can be as large as $\Theta(\sqrt{W})$.
- **Recall:** diameters of p^1 and p^2 are $1 \ll \Theta(\sqrt{W})$.
- ▶ The "LCB" is no longer a valid LCB under non-stationarity.
- SWUCB incurs $\Theta(T)$ dynamic regret.

For a window size W, $c_t(1, B)$ and $c_t(2, B)$ can be as small as $\Theta(1/\sqrt{W})$ (Cheung et al. 20).

- Hence, the "LCB" of diameter can be as large as $\Theta(\sqrt{W})$.
- **Recall:** diameters of p^1 and p^2 are $1 \ll \Theta(\sqrt{W})$.
- ▶ The "LCB" is no longer a valid LCB under non-stationarity.
- SWUCB incurs $\Theta(T)$ dynamic regret.

For a window size W, $c_t(1, B)$ and $c_t(2, B)$ can be as small as $\Theta(1/\sqrt{W})$ (Cheung et al. 20).

- Hence, the "LCB" of diameter can be as large as $\Theta(\sqrt{W})$.
- **Recall:** diameters of p^1 and p^2 are $1 \ll \Theta(\sqrt{W})$.
- The "LCB" is no longer a valid LCB under non-stationarity.
- SWUCB incurs Θ(T) dynamic regret.

For a window size W, $c_t(1, B)$ and $c_t(2, B)$ can be as small as $\Theta(1/\sqrt{W})$ (Cheung et al. 20).

- Hence, the "LCB" of diameter can be as large as $\Theta(\sqrt{W})$.
- **Recall:** diameters of p^1 and p^2 are $1 \ll \Theta(\sqrt{W})$.
- The "LCB" is no longer a valid LCB under non-stationarity.
- SWUCB incurs Θ(T) dynamic regret.

This caveat stems from the estimation.

- This caveat stems from the estimation.
- ▶ We can refine the design principle of UCB.

- This caveat stems from the estimation.
- We can refine the design principle of UCB.
- **Confidence widening:** increase each confidence interval by η .

- This caveat stems from the estimation.
- We can refine the design principle of UCB.
- **Confidence widening:** increase each confidence interval by η .

 $c_t \ge 0 \Longrightarrow \Pr(\text{commuting}) \ge \eta$ $\le 1 - \eta$ $\ge \eta$ 2

- This caveat stems from the estimation.
- We can refine the design principle of UCB.
- **Confidence widening:** increase each confidence interval by η .

 $c_t \ge 0 \Longrightarrow \Pr(\text{commuting}) \ge \eta \\ \le 1 - \eta \qquad \qquad \le 1 - \eta \\ 1 \qquad \qquad 2 \\ \ge \eta \\ \ge \eta$

► New "LCB" $\leq 1/\eta$.

イロト 不得 トイヨト イヨト 二日

Recall: Regret \propto LCB $\times [\sum_{(s,a)} (c_t(s,a) + \eta)].$

Recall: Regret \propto LCB $\times [\sum_{(s,a)} (c_t(s,a) + \eta)].$

Recall: Regret \propto LCB $\times [\sum_{(s,a)} (c_t(s,a) + \eta)].$

▶ If $1/\eta \leq \text{Diameter}(p_t)$, then LCB $\leq 1/\eta \leq \text{Diameter}(p_t)$.

Recall: Regret \propto LCB $\times [\sum_{(s,a)} (c_t(s,a) + \eta)].$

• If $1/\eta \leq \text{Diameter}(p_t)$, then LCB $\leq 1/\eta \leq \text{Diameter}(p_t)$.

▶ If $1/\eta \ge \text{Diameter}(p_t)$, then $\Pr(\text{commuting}) \ge \eta$ for p_t :

Recall: Regret \propto LCB $\times [\sum_{(s,a)} (c_t(s,a) + \eta)].$

► If $1/\eta \leq \text{Diameter}(p_t)$, then LCB $\leq 1/\eta \leq \text{Diameter}(p_t)$.

• If $1/\eta \geq \text{Diameter}(p_t)$, then $\Pr(\text{commuting}) \geq \eta$ for p_t :

Recall: Regret \propto LCB $\times [\sum_{(s,a)} (c_t(s,a) + \eta)].$

► If $1/\eta \leq \text{Diameter}(p_t)$, then LCB $\leq 1/\eta \leq \text{Diameter}(p_t)$.

• If $1/\eta \ge \text{Diameter}(p_t)$, then $\Pr(\text{commuting}) \ge \eta$ for p_t :

• Compare to p^1 and p^2 : a η variation is detected!

The Blessing of More Optimism

Confidence widening ensures either we enjoy reasonable upper bound for LCB or we consume η of variation budget.

The Blessing of More Optimism

Confidence widening ensures either we enjoy reasonable upper bound for LCB or we consume η of variation budget.

Theorem

If we choose the optimal W and η w.r.t. B_p , the dynamic regret bound for the SWUCB-CW algorithm is

$$\tilde{O}\left(D_{max}B_{p}^{rac{1}{4}}T^{rac{3}{4}}
ight)$$
 .

Conclusion

	Stationary	Non-stationary
MAB	OFU	OFU + Forgetting
RL	OFU	Extra optimism + Forgetting

- An unfavorable "phase transition" from MAB (1 state) to RL (≥ 2 states) for SWUCB.
- Blessing of more optimism: Provably low dynamic regret for non-stationary RL.
- Parameter-free: Bandit-over-reinforcement learning (Cheung et al. 20).

Thank You!

rzhu@mit.edu

isecwc@nus.edu.sg, dslevi@mit.edu