

# Adversarial Robustness via Runtime Masking and Cleansing







Yi-Hsuan Wu

Chia-Hung Yuan

Shan-Hung Wu

Department of Computer Science, National Tsing Hua University, Taiwan

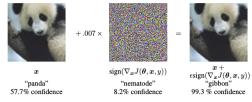
International Conference on Machine Learning, 2020

Y.H. Wu, C.H. Yuan, S.H. Wu

Runtime Masking and Cleansing

ICML'20 1/34

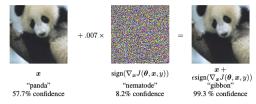
• Deep neural networks are shown to be vulnerable to adversarial attacks, which motivates robust learning techniques



 $https://www.tensorflow.org/tutorials/generative/images/adversarial\_example.png$ 

<sup>1</sup>Athalye, A., Carlini, N., and Wagner, D. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. ICML' 2018 Y.H. Wu, C.H. Yuan, S.H. Wu Runtime Masking and Cleansing ICML'20 3/34

• Deep neural networks are shown to be vulnerable to adversarial attacks, which motivates robust learning techniques



 $https://www.tensorflow.org/tutorials/generative/images/adversarial\_example.png$ 

#### A plethora of defenses have been proposed, however, many of these have been shown to fail<sup>1</sup>

<sup>1</sup>Athalye, A., Carlini, N., and Wagner, D. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. ICML' 2018 Y.H. Wu, C.H. Yuan, S.H. Wu Runtime Masking and Cleansing ICML'20 3/34

 Recent study<sup>2</sup> shows the sample complexity of robust learning can be significantly larger than standard training

<sup>2</sup>Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and Madry, A. Adversarially robust generalization requires more data. NeurIPS, 2018 Y.H. Wu, C.H. Yuan, S.H. Wu Runtime Masking and Cleansing ICML'20

4/34

- Recent study<sup>2</sup> shows the sample complexity of robust learning can be significantly larger than standard training
- A theoretically grounded way to increase the adversarial robustness is to *acquire more data*

<sup>2</sup>Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and Madry, A. Adversarially robust generalization requires more data. NeurIPS, 2018 Y.H. Wu, C.H. Yuan, S.H. Wu Runtime Masking and Cleansing ICML'20

4/34

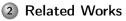
- Recent study<sup>2</sup> shows the sample complexity of robust learning can be significantly larger than standard training
- A theoretically grounded way to increase the adversarial robustness is to *acquire more data*
- This partially explains why the adversarial training, a data augmentation technique, is empirically strong

<sup>2</sup>Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and Madry, A. Adversarially robust generalization requires more data. NeurIPS, 2018 Y.H. Wu, C.H. Yuan, S.H. Wu Runtime Masking and Cleansing ICML'20

4/34

# Outline

#### 1 Goal



3 Runtime Masking and Cleansing (RMC)

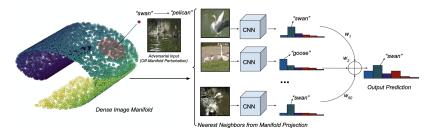
#### 4 Experiments

- Train-Time Attacks
- Defense-Aware Attacks



# WebNN<sup>3</sup>

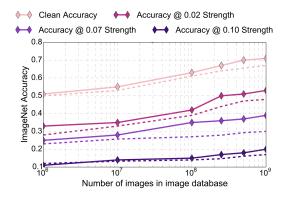
- Use a *web-scale image database* as a manifold and project a test image onto the manifold
- Make more robust prediction by taking only the projected image as inputs



<sup>3</sup>Dubey, A., Maaten, L. v. d., Yalniz, Z., Li, Y., and Mahajan, D. Defense against adversarial images using web-scale nearest-neighbor search. CVPR, 2019 Y.H. Wu, C.H. Yuan, S.H. Wu Runtime Masking and Cleansing ICML'20 6/34

## Drawback: 50 Billion Images May be Too Large

- Web-scale database may not be available in other domains
- Performance drops when using smaller datasets



# Outline

1 Goal

2 Related Works

### 3 Runtime Masking and Cleansing (RMC)

#### 4) Experiments

- Train-Time Attacks
- Defense-Aware Attacks



• Most existing defenses try to get more data at training time

- Most existing defenses try to get more data at *training time*
- We propose a runtime defense
  - (1) Adapts network weights heta for a test point  $\hat{x}$
  - 2 Makes inferecne  $\hat{y} = f(\hat{x}; \theta)$

# Goal

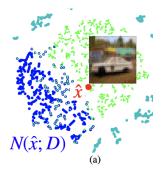
- Most existing defenses try to get more data at training time
- We propose a runtime defense
  - (1) Adapts network weights heta for a test point  $\hat{x}$
  - 2 Makes inferecne  $\hat{y} = f(\hat{x}; \theta)$
- Merits:
  - Uses *potentially large test data* to improve adversarial robustness
  - Is compatible with existing train-time defenses

# Challenge: Test Data are Unlabeled

- How to adapt network weights  $\theta$  for unlabeled  $\hat{x}$ ?
  - Online adversarial training is not applicable

# Challenge: Test Data are Unlabeled

- How to adapt network weights  $\theta$  for unlabeled  $\hat{x}$ ?
  - Online adversarial training is not applicable
- Extension: KNN-based online adversarial training
  - (1) For each  $\hat{x}$ , find its KNN  $\mathbb{N}(\hat{x}; D)$  from the training set D
  - 2 Augment N(x̂;D) with adversarial examples (cyan points) perturbed from N(x̂;D)
  - 3 Fine-tune the networks weights  $\theta$  based on  $\mathbb{N}(\hat{x}; D)$
  - **4** Inference  $\hat{y} = f(\hat{x}; \theta)$

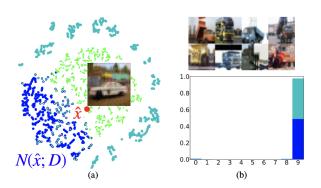


Y.H. Wu, C.H. Yuan, S.H. Wu

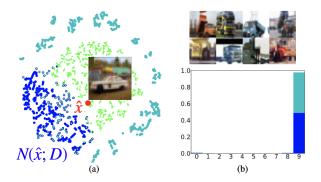
Runtime Masking and Cleansing

ICML'20 11/34

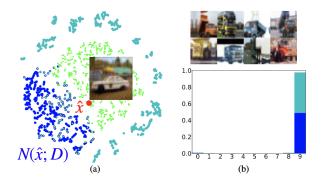
• Figure (b) shows a histogram of  $\mathbb{N}(\hat{x}; D)$  w.r.t. different labels (x-axis)



- Figure (b) shows a histogram of N(x̂;D) w.r.t. different labels (x-axis)
  N(x̂;D) contains examples of the same label
  - The adversarial point  $\hat{x}$  can mislead KNN selection

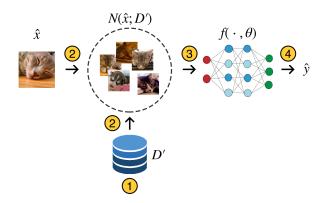


- Figure (b) shows a histogram of  $\mathbb{N}(\hat{\pmb{x}};D)$  w.r.t. different labels (x-axis)
- $\mathbb{N}(\hat{x}; D)$  contains examples of the same label
  - $\circ$  The adversarial point  $\hat{x}$  can mislead KNN selection
- Therefore, the fine-tuned  $\theta$  ends up being *less* robust



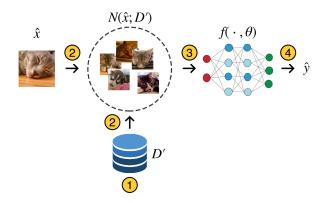
# Runtime Masking and Cleansing (RMC)

- RMC precomputes adversarial examples
  - 1 Augment D with adversarial examples to get D'
  - 2 Given a test point  $\hat{x}$ , find its KNN  $\mathbb{N}(\hat{x};D)'$  from D'



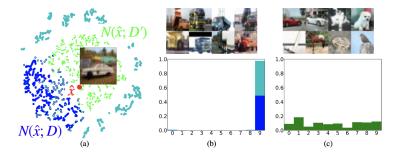
# Runtime Masking and Cleansing (RMC)

- RMC precomputes adversarial examples
  - 1 Augment D with adversarial examples to get D'
  - 2 Given a test point  $\hat{x}$ , find its KNN  $\mathbb{N}(\hat{x};D)'$  from D'
  - 3 Adapt the networks weights heta based on  $\mathbb{N}(\hat{x};D')$
  - (4) Inference  $\hat{y} = f(\hat{x}; \theta)$



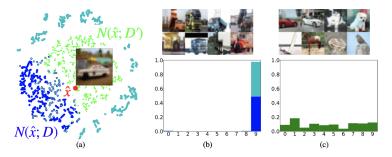
## Why Does It Work?

• As Figure (c) shows,  $\mathbb{N}(\hat{x};D')$  is no longer misled by the adversarial  $\hat{x}$ 



## Why Does It Work?

- $\bullet\,$  As Figure (c) shows,  $\mathbb{N}(\hat{x};D')$  is no longer misled by the adversarial  $\hat{x}$
- Defense effects:
  - The diverse-labeled  $\mathbb{N}(\hat{x};D')$  *cleanses* the heta of the non-robust patterns
  - Also, dynamically masks the network gradients



# Outline

1 Goal

2 Related Works

**3** Runtime Masking and Cleansing (RMC)

#### 4 Experiments

- Train-Time Attacks
- Defense-Aware Attacks

#### 5) Implications & Conclusion

#### Datasets

- MNIST
- CIFAR-10
- ImageNet

# Outline

1 Goal

2 Related Works

3 Runtime Masking and Cleansing (RMC)

#### 4 Experiments

- Train-Time Attacks
- Defense-Aware Attacks

#### 5) Implications & Conclusion

# MNIST & CIFAR-10

Table 1. Train-time white-box attacks

 $(\varepsilon = 0.3)$  on MNIST.

|                                           | Acc.      | Robustness |      |      |       |      |
|-------------------------------------------|-----------|------------|------|------|-------|------|
|                                           |           | FGSM       | BIM  | PGD  | CW-L2 | JSMA |
| Regularly                                 | Traine    | d          |      |      |       |      |
| None                                      | 99.3      | 11.6       | 0.6  | 0.5  | 0.7   | 14.1 |
| DeepNN                                    | 99.2      | 12.3       | 0.6  | 0.5  | 75.3  | 58.2 |
| WebNN                                     | 98.2      | 70.4       | 82.6 | 85.3 | 87.4  | 87.1 |
| RMC                                       | 99.3      | 99.3       | 99.3 | 99.3 | 99.3  | 99.1 |
| Adversar                                  | ially Tra | ained w.   | FGSM |      |       |      |
| None                                      | 99        | 94         | 51.4 | 0.7  | 16.3  | 42.9 |
| DeepNN                                    | 98.8      | 94         | 56.9 | 1.7  | 85.9  | 77.2 |
| WebNN                                     | 98.6      | 94.3       | 85.2 | 90.8 | 89.1  | 87.9 |
| RMC                                       | 99.2      | 98.6       | 98.9 | 98.9 | 98.7  | 98.8 |
| Adversarially Trained w. PGD              |           |            |      |      |       |      |
| None                                      | 99.1      | 96.6       | 93   | 94.8 | 65.6  | 94.6 |
| DeepNN                                    | 98.8      | 96.4       | 94.5 | 95.8 | 91    | 95.4 |
| WebNN                                     | 98.7      | 96.5       | 94.5 | 95.8 | 91    | 97.5 |
| RMC                                       | 99.2      | 98.2       | 97.5 | 97.8 | 99.1  | 98.9 |
| Regularly Trained w. Jacobbian Reg.       |           |            |      |      |       |      |
| None                                      | 94.8      | 22.1       | 7.6  | 8    | 13.7  | 26.5 |
| DeepNN                                    | 95.9      | 21.1       | 8.9  | 9.6  | 55.7  | 41   |
| WebNN                                     | 94.2      | 55.5       | 55.6 | 58.3 | 79    | 66.4 |
| RMC                                       | 99.3      | 98.9       | 98.9 | 99.1 | 99.2  | 98   |
| Regularly Trained w. Cross-Lipschitz Reg. |           |            |      |      |       |      |
| None                                      | 99.3      | 70.6       | 30.7 | 19.3 | 23.8  | 48.6 |
| DeepNN                                    | 99.2      | 73.2       | 37.5 | 22.3 | 72.7  | 73.4 |
| WebNN                                     | 97        | 79.8       | 75.1 | 74.4 | 82.8  | 85.5 |
| RMC                                       | 99.3      | 99.2       | 99.2 | 99.3 | 99.2  | 98.2 |

### Table 2. Train-time white-box attacks $(\varepsilon = 8/255)$ on CIFAR-10.

Acc. Robustness FGSM BIM PGD CW-L2 JSMA **Regularly Trained** 83.3 25.3 8.5 6.7 9.4 8 None DeepNN 84.3 26.5 9.2 8 55.2 23 WebNN 81.8 40.9 47.8 48.6 64.6 38.3 RMC 89.3 85.3 86.7 87.5 89.7 88.6 Adversarially Trained w. FGSM 83.2 8.3 17.3 None 78.9 9.3 8.8 85 56.2 23.1 DeepNN 81 9.9 9.1 80 WebNN 81.9 42.5 43.3 64.2 34.4 RMC 89.3 87.3 87.1 88.7 89.7 89.1 Adversarially Trained w. PGD 78.7 50.6 7.8 None 43.6 44.3 11.5 DeepNN 75.6 52.5 45.6 45.8 48.7 38.5 WebNN 73.5 54 48.1 48.4 53.4 47 RMC 88.3 81.2 81.1 80.7 88.7 87.7 **Regularly Trained w. Jacobbian Reg.** None 86.3 37.9 20.6 20.2 10.2 8 DeepNN 87.8 39.8 21 21.4 63.1 41.1 WebNN 76.2 49.9 55.5 55.5 68.9 49 RMC 87.1 82.4 83.6 83.5 88.4 86.6 Regularly Trained w. Cross-Lipschitz Reg.

| None   | 85.3 | 31   | 18.6 | 18.4 | 8.4  | 13   |
|--------|------|------|------|------|------|------|
| DeepNN | 86.9 | 32.6 | 19   | 19   | 61.9 | 36.8 |
| WebNN  | 74.5 | 46.5 | 51   | 50.5 | 67.1 | 48.6 |
| RMC    | 85   | 79.8 | 80.8 | 81.1 | 84.9 | 86.9 |

|              | Acc. | Robustness         |                     |
|--------------|------|--------------------|---------------------|
|              |      | $\epsilon = 8/255$ | $\epsilon = 16/255$ |
| None         | 72.9 | 8.5                | 5.2                 |
| Adv. Trained | 62.3 | N/A                | 52.5                |
| DB           | 65.3 | N/A                | 55.7                |
| DeepNN       | 26.6 | 12.9               | 8.7                 |
| WebNN        | 27.8 | 18.8               | 15.2                |
| RMC          | 73.6 | 62.4               | 55.9                |

Table 3. Train-time white-box attacks on ImageNet.

|              | Acc. | Robustness         |                     |
|--------------|------|--------------------|---------------------|
|              |      | $\epsilon = 8/255$ | $\epsilon = 16/255$ |
| None         | 72.9 | 8.5                | 5.2                 |
| Adv. Trained | 62.3 | N/A                | 52.5                |
| DB           | 65.3 | N/A                | 55.7                |
| DeepNN       | 26.6 | 12.9               | 8.7                 |
| WebNN        | 27.8 | 18.8               | 15.2                |
| RMC          | 73.6 | 62.4               | 55.9                |

Table 3. Train-time white-box attacks on ImageNet.

- For all datasets, RMC achieves the state-of-the-art robustness
- RMC yields significantly *higher clean accuracy*

|              | Acc. | Robustness         |                     |
|--------------|------|--------------------|---------------------|
|              |      | $\epsilon = 8/255$ | $\epsilon = 16/255$ |
| None         | 72.9 | 8.5                | 5.2                 |
| Adv. Trained | 62.3 | N/A                | 52.5                |
| DB           | 65.3 | N/A                | 55.7                |
| DeepNN       | 26.6 | 12.9               | 8.7                 |
| WebNN        | 27.8 | 18.8               | 15.2                |
| RMC          | 73.6 | 62.4               | 55.9                |

Table 3. Train-time white-box attacks on ImageNet.

- For all datasets, RMC achieves the state-of-the-art robustness
- RMC yields significantly *higher clean accuracy* 
  - RMC does not enforce a smooth decision boundary

|              | Acc. | Robustness         |                     |
|--------------|------|--------------------|---------------------|
|              |      | $\epsilon = 8/255$ | $\epsilon = 16/255$ |
| None         | 72.9 | 8.5                | 5.2                 |
| Adv. Trained | 62.3 | N/A                | 52.5                |
| DB           | 65.3 | N/A                | 55.7                |
| DeepNN       | 26.6 | 12.9               | 8.7                 |
| WebNN        | 27.8 | 18.8               | 15.2                |
| RMC          | 73.6 | 62.4               | 55.9                |

Table 3. Train-time white-box attacks on ImageNet.

- For all datasets, RMC achieves the state-of-the-art robustness
- RMC yields significantly higher clean accuracy
  - RMC does not enforce a smooth decision boundary
- For gray- black-box attacks, please refer to our main paper

# Outline

1 Goal

2 Related Works

3 Runtime Masking and Cleansing (RMC)

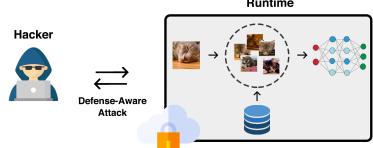
#### 4 Experiments

- Train-Time Attacks
- Defense-Aware Attacks

#### 5) Implications & Conclusion

## **Defense-Aware Attacks**

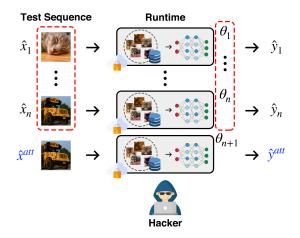
• At runtime, attackers may be aware of RMC and try to circumvent it



Runtime

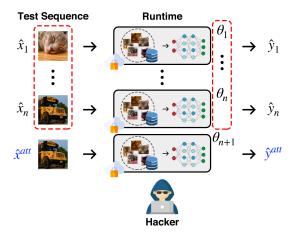
# Strong Attack: PGD-Skip

- Assumes that all information is exposed, including
  - Test sequence
  - D' and adapted model weights  $\theta$ 's



# Strong Attack: PGD-Skip

- Assumes that all information is exposed, including
  - Test sequence
  - D' and adapted model weights heta's
- I.e., the attack point  $\hat{x}^{\text{att}}$  can bypass all previous adaptations



## RMC Could be Broken by PGD-Skip

#### • About 15% robustness



#### However, PGD-Skip is Unrealistic

- Two strong assumptions
- Access to all data points at runtime

2 No delay to place an attack point  $\hat{x}^{\text{att}}$ 

#### However, PGD-Skip is Unrealistic

- Two strong assumptions
- Access to all data points at runtime
  - $\circ\,$  When model is publicly deployed, it is unlikely to eavesdrop every user's input  $\hat{x}$
- 2 No delay to place an attack point  $\hat{x}^{\text{att}}$

#### However, PGD-Skip is Unrealistic

- Two strong assumptions
- Access to all data points at runtime
  - $\circ\,$  When model is publicly deployed, it is unlikely to eavesdrop every user's input  $\hat{x}$
- 2 No delay to place an attack point  $\hat{x}^{\text{att}}$ 
  - It is hard to mute other users

#### More Realistic Defense-Aware Attacks

PGD-Skip-Partial

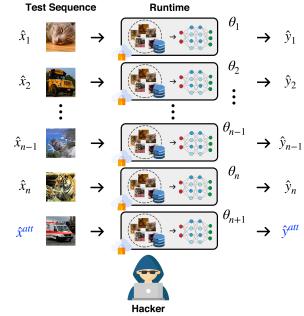
• Only partial points in the input sequence are known

#### PGD-Skip-Delayed

• The adversary generates/places an attack point  $\hat{x}^{\text{att}}$  with some delay

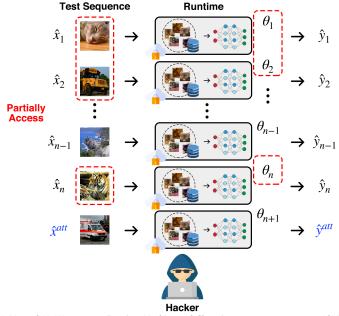
Y.H. Wu, C.H. Yuan, S.H. Wu

# **PGD-Skip-Partial**

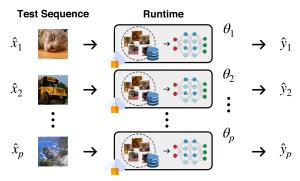


Y.H. Wu, C.H. Yuan, S.H. Wu

# **PGD-Skip-Partial**



Y.H. Wu, C.H. Yuan, S.H. Wu



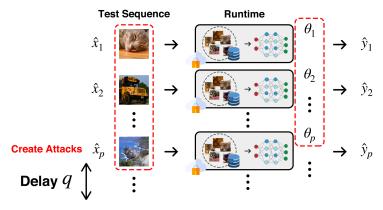


Y.H. Wu, C.H. Yuan, S.H. Wu



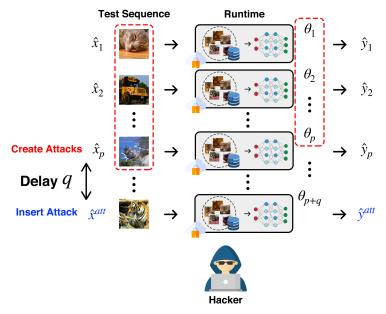


Y.H. Wu, C.H. Yuan, S.H. Wu





Y.H. Wu, C.H. Yuan, S.H. Wu



Y.H. Wu, C.H. Yuan, S.H. Wu

#### The Revenge of RMC

- With some minor tweaks, RMC can defend these two attacks
  - q: delay of PGD-Skip-Delayed
  - "known:" portion of eavesdropped points by PGD-Skip-Partial

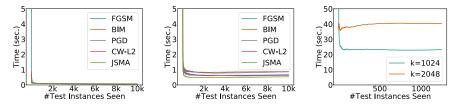
|                                                     | (                  | a) PGD-S                    | kip-Delay  | ed and (b)         | PGD-Ski                      | p-Partial       | attacks.   |                           |            |  |
|-----------------------------------------------------|--------------------|-----------------------------|------------|--------------------|------------------------------|-----------------|------------|---------------------------|------------|--|
|                                                     | $\delta = 0.5$     |                             |            |                    | $\delta = 0.75$              |                 |            | $\delta = 1$              |            |  |
| q                                                   | 0                  | 50                          | 100        | 0                  | 50                           | 100             | 0          | 50                        | 100        |  |
| p = 50                                              | 19.3               | 51                          | 63.7       | 20.4               | 48.9                         | 62.8            | 20.9       | 44.1                      | 48.6       |  |
| p = 100                                             | ) 25.3             | 50.8                        | 55.1       | 25.5               | 51.5                         | 56.1            | 39.5       | 41                        | 30.6       |  |
| (a) PGD-Skip-Delayed with $\mathbb{D}'$ replacement |                    |                             |            |                    |                              |                 |            |                           |            |  |
|                                                     |                    |                             |            |                    |                              |                 |            |                           |            |  |
|                                                     |                    |                             |            |                    |                              |                 |            |                           |            |  |
|                                                     |                    | $\delta = 0.5$              |            |                    | δ = <b>0.75</b>              | ;               |            | $\delta = 1$              |            |  |
| known                                               | 30%                | $\frac{\delta = 0.5}{50\%}$ | 70%        | 30%                | $\frac{\delta = 0.75}{50\%}$ | ;<br>70%        | 30%        | $\frac{\delta = 1}{50\%}$ | 70%        |  |
| known<br>p = 50                                     | <b>30%</b><br>48.4 |                             | <b>70%</b> |                    |                              |                 | <b>30%</b> |                           | <b>70%</b> |  |
|                                                     |                    | 50%                         |            | 30%                | 50%                          | 70%             |            | 50%                       |            |  |
| p = 50                                              | 48.4               | <b>50%</b><br>48.1          | 45.2       | <b>30%</b><br>47.5 | <b>50%</b>                   | <b>70%</b> 43.3 | 50.4       | <b>50%</b> 52.4           | 49.5       |  |

Table 5. Performance of RMC+ under the

(b) PGD-Skip-Partial with  $\mathbb{D}'$  replacement

# How Long is the Delay Incurred by RMC at Runtime?

- About 1 second on CIFAR-10 and a delay of 20-40 seconds on ImageNet
  - May be acceptable for non-realtime applications
  - Can be accelerated by existing techniques



# Outline

1 Goal

2 Related Works

3 Runtime Masking and Cleansing (RMC)

#### 4 Experiments

- Train-Time Attacks
- Defense-Aware Attacks

#### **5** Implications & Conclusion

### **Conclusions & Implications**

- We proposed RMC, the first runtime defense
  - Leverages *potentially large test data* to improve the robustness of a model after deployment

# **Conclusions & Implications**

- We proposed RMC, the first runtime defense
  - Leverages *potentially large test data* to improve the robustness of a model after deployment
- Implications:
  - Currently, new attacks trigger new deployments
  - RMC could end this endless chasing game

# **Conclusions & Implications**

- We proposed RMC, the first runtime defense
  - Leverages *potentially large test data* to improve the robustness of a model after deployment
- Implications:
  - Currently, new attacks trigger new deployments
  - RMC could end this endless chasing game
- Questions? Chat with us at session time!
  - Or email to: <a href="mailto:chyuan@datalab.cs.nthu.edu.tw">chyuan@datalab.cs.nthu.edu.tw</a>