Universal Average-Case Optimality of Polyak Momentum

Damien Scieur (Samsung SAIT AI Lab, Montréal)

SAMSUNG

Advanced Institute of Technology Al Lab Montreal

Fabian Pedregosa (Google Research)

Google Research

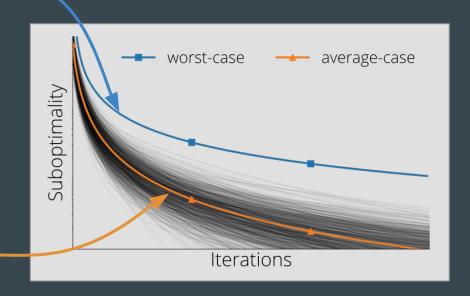
Worst Case V.S. Average Case

Worst case

- ✓ Complexity bounds for any input.
- X Not representative of typical runtime.

Average case

✓ Representative of the typical behaviour.



??? Complexity averaged over all problem instances.

Optimal Average Case Methods

Best method: minimizes P_{t} in

initialization problem
$$R^2$$
 $\int_{\mathbb{R}} P_t^2$ $d\mu$ algorithm

Theorem Pedregosa, Scieur (ICML 2020)

Any optimal average-case method has the form

$$x_t = x_{t-1} + (1 - a_t)(x_{t-2} - x_{t-1}) + b_t \nabla f(x_{t-1})$$

Momentum

Gradient step-size

Optimal Average Case Methods: Applications

- Neural networks share similar training dynamics of a quadratic problem. (Jacot et al. 2018, Novak et al. 2018, Arora et al. 2019, Chizat and Bach, 2019)

- Design of accelerated gossip algorithms: optimal method w.r.t. Jacobi measure Berthier, Bach, Gaillard, (arxiv 1805.08531).

- Random matrix sketching for solving least-squares
Lacotte, Pilanci (ICML 2020)

- Possible to design optimal methods for any distribution Pedregosa, Scieur (ICML 2020)

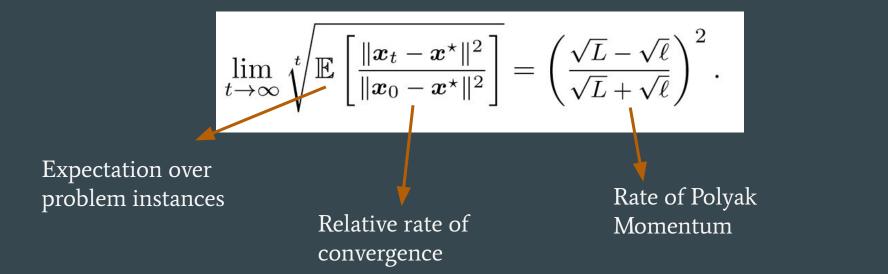
Noticed some regularity when #iterations goes to infinity

Conjecture All average-case optimal methods converge to Polyak momentum

(in #iterations, whatever the expected spectral density)

Asymptotic Rate of Optimal Methods (Scieur & Pedregosa, ICML 2020)

Assume we use an **average-case optimal method** w.r.t. the density function μ , **strictly positive** on the interval [ℓ , L]. Then, for all such densities μ ,



Asymptotic Recurrence (Scieur & Pedregosa, ICML 2020)

Assume we use an **average-case optimal method** w.r.t. the density function μ , **strictly positive** on the interval [ℓ , L]. Then, for all such densities μ ,

$$\mathbf{x}_{t} = \mathbf{x}_{t-1} + (1 - a_{t})(\mathbf{x}_{t-2} - \mathbf{x}_{t-1}) + b_{t} \nabla f(\mathbf{x}_{t-1})$$

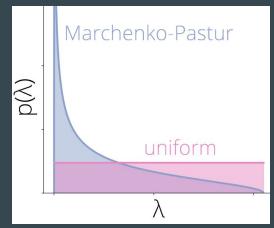
$$\lim_{t \to \infty} (1 - a_{t}) = -\left(\frac{\sqrt{L} - \sqrt{\ell}}{\sqrt{L} + \sqrt{\ell}}\right)^{2}$$

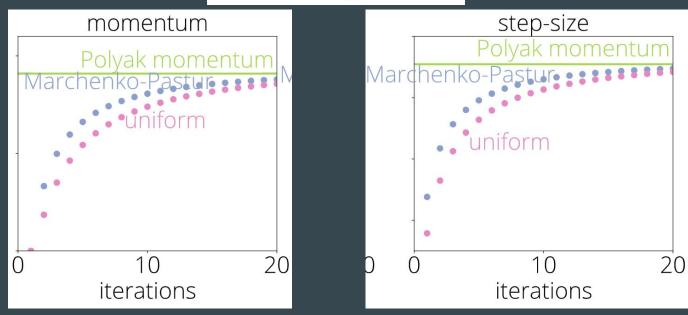
$$\lim_{t \to \infty} b_{t} = -\left(\frac{2}{\sqrt{L} + \sqrt{\ell}}\right)^{2}$$

Polyak's optimal momentum

Polyak's optimal step-size

Numerical evidences





Take-home message

Polyak momentum is *provably* always a good choice.

- Easier to design than optimal method
- Strong theory explaining its good empirical performance
- Possible loss: constant number of iterations