Oracle Efficient Private NonConvex Optimization

Seth Neel
University of Pennsylvania
Giuseppe Vietri
University of Minnesota

Aaron Roth
University of Pennsylvania
Steven Wu
University of Minnesota

EMPSt

- Consider following general optimization problem defined in terms of dataset $D \in X^{n}$.

$$
\min _{w \in \mathscr{W}} L(D, w)
$$

- \mathscr{W} is a discrete and bounded set. For this talk assume that $\|\mathscr{W}\|_{\infty}=1$
- The loss function $L: X^{n} \times \mathscr{V} \rightarrow[0,1]$ is bounded.

Can we solve solve this problem with differential privacy?

First Contribution

- We propose an Objective Perturbation Algorithm that:
- Satisfies (ε, δ)-differential privacy.
- W.h.p finds an answer $\widehat{w} \in \mathscr{W}$ with error bounded by

$$
\left|L(D, \widehat{w})-L\left(D, w^{*}\right)\right| \leq \frac{14 \sqrt{2(d+1) \ln (2 \beta)} \sqrt{\ln (1 / \delta)}}{n \tau \epsilon .}
$$

The Normalization Trick

- Let $\|w\|_{2} \leq D$, For all $w \in \mathscr{W}$. The normalization function is:

$$
\pi(w)=\left(w_{1}, \ldots, w_{d}, D \sqrt{1-\|w\|_{2} / D}\right) \frac{1}{D}
$$

- Key idea: Sample random vector η, and Augment objective:

$$
\min _{w \in \mathscr{V}} L(D, w)-\langle\eta, \pi(w)\rangle
$$

- Solve using non-private optimization oracle.

Stability of the Objective

- Let $w, w^{\prime} \in \mathscr{W}$. Then

$$
\| \pi(w)-\pi\left(w^{\prime}\left\|_{2}^{2} \geq \frac{1}{D^{2}}\right\| w-w^{\prime} \|_{2}^{2}\right.
$$

- The normalization trick provides stability.

Objective Perturbation.

Algorithm 1: ObjPertDiscrete

Input: Projection function $\pi, \mathcal{D}=\left\{I_{i}\right\}$, optimization oracle
$n \leftarrow|\mathcal{D}|$;
$\sigma \leftarrow \frac{7 L D^{2} \sqrt{\ln 1 / \delta}}{\tau \epsilon} ;$
Draw i.i.d random vector $\eta \sim \mathcal{N}\left(0, \sigma^{2}\right)^{d+1}$;

$$
w \in \underset{w \in \mathcal{W}_{\tau}}{\arg \min }\left(\frac{L(\mathcal{D}, w)-\langle\eta, \pi(w)\rangle}{n}\right)
$$

Output: w

Second Setting

- Consider following general optimization problem defined in terms of dataset $D \in X^{n}$.

$$
\min _{w \in \mathscr{W}} L(D, w)
$$

- \mathscr{W} is a general decision space. For this talk assume that $\|\mathscr{W}\|_{\infty}=1$
- The loss function $L: X^{n} \times \mathscr{W} \rightarrow[0,1]$ is G-Lipschitz, convex and bounded.

Can we solve solve this problem with differential privacy?

Second Contribution

- We propose an Objective Perturbation Algorithm that:
- Satisfies (ε, δ)-differential privacy.
- W.h.p finds an answer $\widehat{w} \in \mathscr{W}$ with error bounded by

$$
\left|L(D, \widehat{w})-L\left(D, w^{*}\right)\right| \leq \frac{d^{5 / 4} G \sqrt{D_{2} \log (1 / \beta)}}{\sqrt{n \epsilon}}
$$

Standard Differential Privacy (DP)

[Dwork et al., 2006]

Two datasets

$$
=\begin{array}{|c|}
\hline \mathrm{A} \\
\hline \mathrm{~B} \\
\hline \mathrm{C} \\
\hline \mathrm{D} \\
\hline
\end{array}
$$

are neighbors if the are different on only one row.

Definition: Mechanism M satisfies ε-differential privacy if, for all neighboring datasets and for all $r \in \operatorname{range}(M)$

Experiments.

Experiment

Adult Dataset (23 dimensions) Performace

Conclusion.

- We provide two new private algorithm,

