New Oracle-Efficient Algorithms for Private Synthetic Data Release

Giuseppe Vietri University of Minnesota

Thomas Steinke

IBM Research-Almaden

Grace Tian

Harvard

Mark Bun **Boston University**

Zhiwei Steven Wu

University of Minnesota

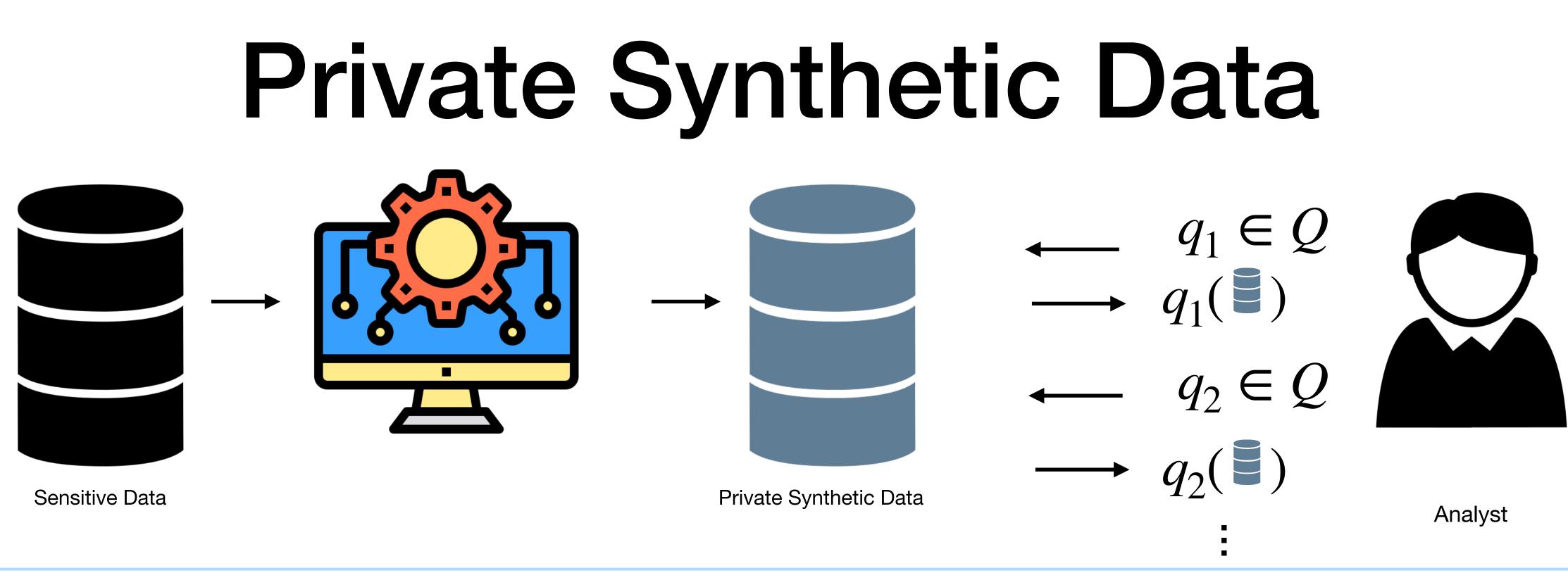
Privacy in Data Analysis

In many important cases, access to **data** is restricted due to **privacy** concerns.

Financial

Medical

Socioeconomic



Example: Q is a set of k-Way Marginal Queries.

$$q_{\phi}(D) = \frac{1}{D} \sum_{x \in D} \phi(x)$$

$$\phi(x) = \begin{cases} 1 & \text{if } x_a = 1 \land x_b = 0 \land x_c = 1 \\ 0 & \text{otherwise} \end{cases}$$

GOAL: Find such that $\max_{i} |q_i| \leq \alpha$, subject to differential privacy.

Prior Work: MWEM

- **OMWEM** is an **optimal** algorithm for generating differentially private synthetic data.
- $^{\circ}$ It keeps track of a distribution over the data domain X.
- O But Runtime is exponential in the dimension of the data. Intractable for high dimensions.
- This runtime in necessary in the works case [Ullman 2016], [Ullman & Vadhan 2011].

Our Contributions Error $\widetilde{O}\left(\frac{d^{3/4}\log^{1/2}(|Q|)}{\sqrt{n\varepsilon}}\right) \leftarrow \text{Best Empirically}$ $\widetilde{O}\left(\frac{d^{5/8}\log^{1/2}(|Q|)}{\sqrt{n\varepsilon}}\right)$ $\widetilde{O}\left(\frac{d^{1/5}\log^{3/5}(|Q|)}{n^{2/5}\varepsilon^{2/5}}\right)$ $\sim \left(d^{1/4} \log^{1/2}(|Q|) \right)$ 0

FEM sepFEM DQRS

MWEM

d = size of the data.

Oracle Efficient

Computational efficient given access to an **optimization oracle** that can solve: $\arg\min_{x\in X}\sum_{i=1}^{t-1} \left(q_i(D) - q_i(x)\right) + \langle x, \sigma \rangle$

We take advantage of **fast heuristics** like integer programming.

Our algorithms are **Oracle Efficient**.

Differential Privacy (DP) [Dwork et al., 2006]

Two datasets

$$\Pr[M(\textcircled{b}) = r]$$

Definition: Mechanism M satisfies ε -**DP** if, for all neighboring datasets and for all $r \in range(M)$

$$\leq e^{\varepsilon} \Pr[M({\gtrless}) = r]$$

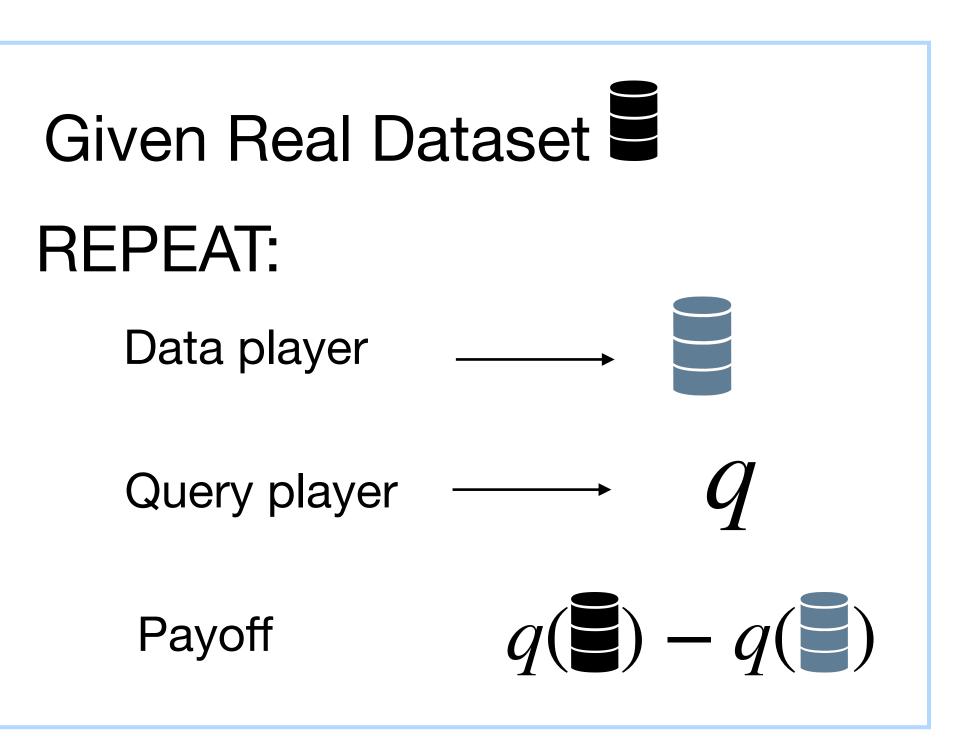
Exponential Mechanism (EM)

- Suppose we have a set of low sensitivity Queries $Q = \{q_1, ..., q_m\}$
- And some score function $s: X \times Q \rightarrow [0,1]$, where s has sensitivity Δs
- The EM chooses $q \in Q$ with the maximum possible score.
- ^O Satisfies ε -differential privacy, with

herror
$$\approx \frac{\Delta s}{\varepsilon} \ln(|Q|)$$

A Framework for Private Synthetic Data

- Zero-sum game.
- No-regret Dynamics -> Game equilibrium. (Freud & Schapire, 1997)
- Game equilibrium -> Accurate synthetic data. (Hsu et al., 2013; Gaboardi et al., 2014).
- Similar to GANs.



Prior Work: MWEM

Input: Private Dataset $D \in X^n$, target privacy parameters ε, δ .

 \widehat{D}_1 = uniform distribution over *X*

For t = 1..., T:

1.
$$s(q) = q(D) - q(\widehat{D}) \quad \forall q \in Q$$

Sample q_t from the Exponential Mechanism with score function s and privacy $\frac{2T}{2}$ 2. 3. $\forall_{x \in X} \widehat{D}_{t+1}(x) \propto \widehat{D}_t(x) \exp\left(q_t(x)\left(q_t(x)\right)\right)$

Output
$$\frac{1}{T} \sum_{t=1}^{T} \widehat{D}_t$$

$$D) - q_t(\widehat{D}) \Big) / 2n \bigg)$$

Computational Bottleneck

Our First Algorithm: FEM

• FEM: Follow-the-Perturbed-Leader with Exponential Mechanism

- ^O Replace the MWEM's computational bottleneck (MW) by *FTPL*
- We use the *FTPL* algorithm from [Suggala et al. 2019].

The FEM Algorithm

Input: Real Dataset \blacksquare , target privacy parameters ε . Algorithms *FTPL* and M_E .

Set: Number of steps T, and Exponential Mechanism privacy parameter ε_{Ω}

For t = 1..., T:

1. $\exists_t \sim FTPL \#$ Data player gets a sample from FTPL.

2.
$$s(q) = q(\mathbf{U}) - q(\mathbf{U}) \quad \forall q \in Q$$

Sample q_t from the Exponential Mechanism with score function s and privacy ε_0 3

4. FTPL incurs loss
$$q_t(\mathbf{E}) - q_t(\mathbf{E}_t)$$

Output
$$\cup \{ \boldsymbol{\exists}_1, \ldots, \boldsymbol{\exists}_T \}$$

Follow the Perturbed Leader

Input: Previous Queries q_1, \ldots, q_{t-1} , Number of samples *s*

For i = 1..., s:

1. Sample σ from exponential distribution.

2.
$$x_i = \arg\min_{x \in X} \sum_{i=1}^{t-1} (q_i(D) - q_i(x))$$

Dutput $\widehat{D} = \{x_1, \dots, x_s\}$

 $+\langle x,\sigma\rangle$

FTPL has sub-linear regret.

Benchmark: HDMM

- High Dimensional Matrix Mechanism (McKenna et al., 2018).
- Considered the state-of-the-art in practice.
- Used by US Census Bureau.
- Empirical evaluation benchmark.

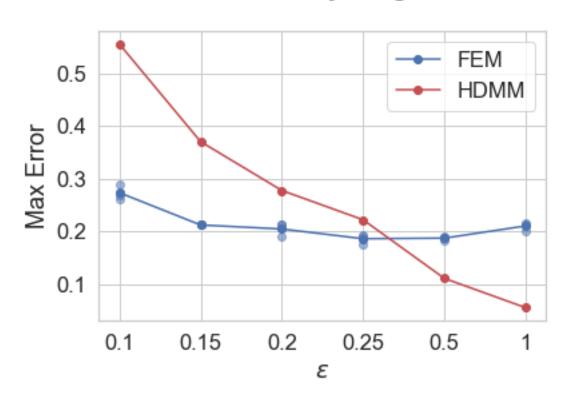
Experiments

- Two high dimensional Datasets: ADULT and LOANS.
- We compared FEM against HDMM.
- Focus on large workloads and low privacy budget.
- Workload consists of k-way marginals.
- **o** Basis for comparison is the maximum error: max $|q_i(\blacksquare) q_i(\blacksquare)|$

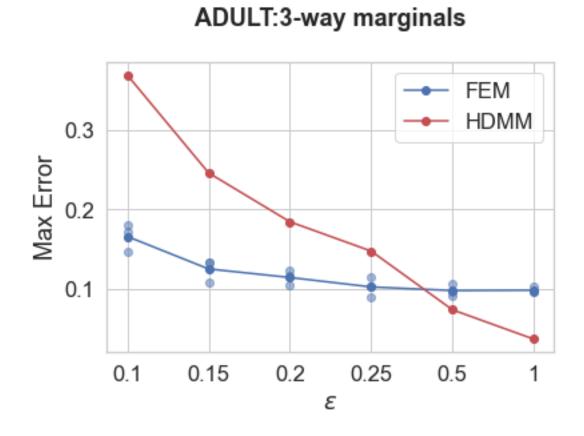
Datasets

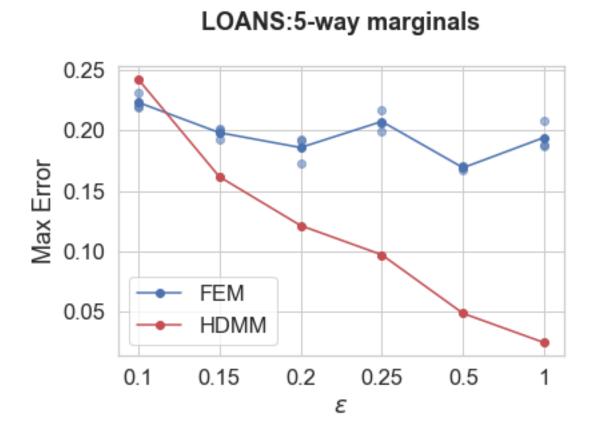
	Rows	Attributes	K-way marginals	Total Queries
ADULT	48,842	15	5	1,213,952
LOANS	42,535	48	5	588,584

Error vs e

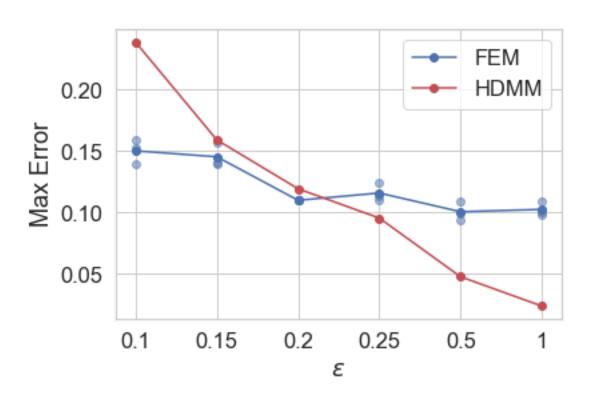


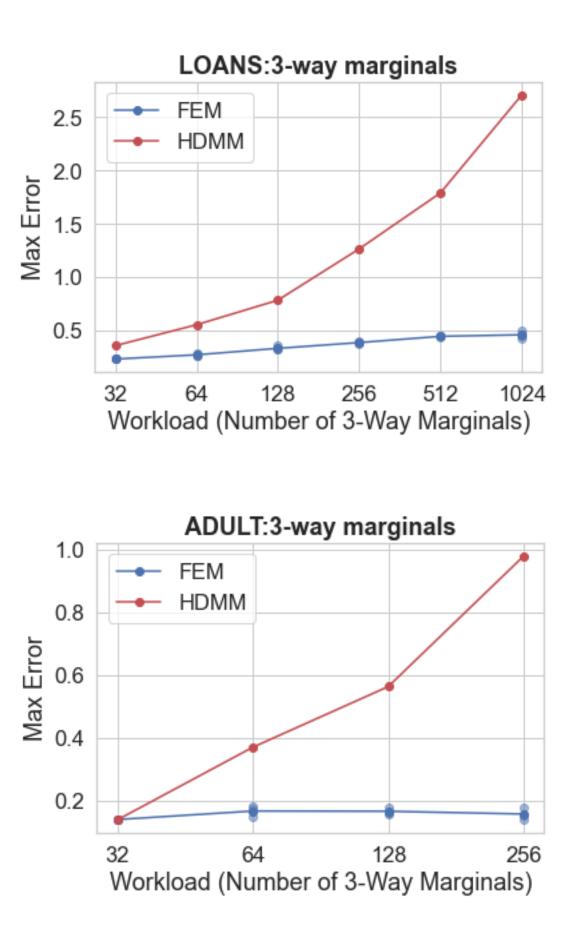
LOANS:3-way marginals



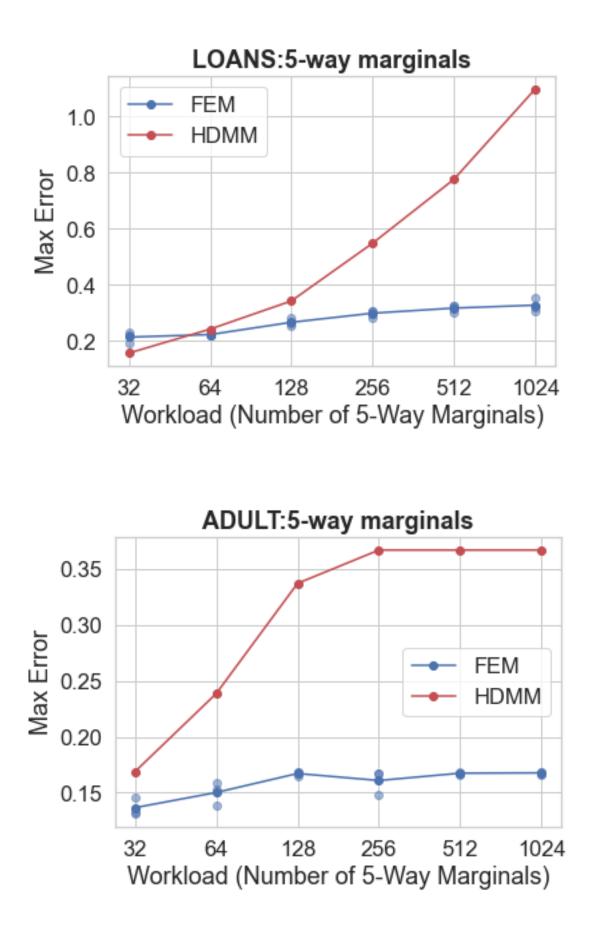


ADULT:5-way marginals





Error vs Workload



Conclusion

- We introduced three new algorithms for private synthetic data release.
- Our algorithms are close to the theoretical optimal.
- Computationally efficient for high dimensional settings.
- Our algorithm performs better in practice than the state-of-the art in
 - the high-privacy and large workload setting.