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Active Learning - Problem Setting

What is active learning?

• Access to unlabelled data.
• Query an oracle for labels/targets. → Expensive process.
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Active Learning for Node Classification

? ?
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Active Learning Process

Pool-based active learning algorithm steps :

1 PREDICT : Infer Ŷ = ft(X).
Trained on (X,YLt ) current labelled set Lt .

2 QUERY : Select q from the unlabelled set Ut .
Update Lt+1 = Lt ∪ {qt} and Ut+1 = Ut \ {qt}.

Repeat until the query budget B has been reached.
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Active Learning on Graphs - Existing work

GCN-based models

SOTA Active leaning strategies based on GCN output.
(AGE [1] and ANRMAB [2])

1 PREDICT : Infer Ŷ = ft(X).
→ Run one epoch of GCN.
→ Save the node embeddings output from the GCN.

2 QUERY Select q ∈ Ut .
→ Select q based on metrics derived from GCN output.

[1] Cai et al. ”Active learning for graph embedding” arXiv 2017
[2] Gao et al. ”Active discriminative network representation learning” IJCAI 2018
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→ Run one epoch of GCN.
→ Save the node embeddings output from the GCN.

2 QUERY Select q ∈ Ut .
→ Select q based on metrics derived from GCN output.

[1] Cai et al. ”Active learning for graph embedding” arXiv 2017
[2] Gao et al. ”Active discriminative network representation learning” IJCAI 2018

5 / 22



Active Learning on Graphs - Existing work

GCN-based models

SOTA Active leaning strategies based on GCN output.
(AGE [1] and ANRMAB [2])

1 PREDICT : Infer Ŷ = ft(X).
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→ Run one epoch of GCN.
→ Save the node embeddings output from the GCN.

2 QUERY Select q ∈ Ut .

→ Select q based on metrics derived from GCN output.

[1] Cai et al. ”Active learning for graph embedding” arXiv 2017
[2] Gao et al. ”Active discriminative network representation learning” IJCAI 2018

5 / 22



Active Learning on Graphs - Existing work

GCN-based models

SOTA Active leaning strategies based on GCN output.
(AGE [1] and ANRMAB [2])

1 PREDICT : Infer Ŷ = ft(X).
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Existing work - Results

GCN-based algorithms on Cora.
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Limitation : Deep learning models generally rely on
sizable validation set for hyperparameters tuning.

Results with non-optimized GCN
hyperparameter highlight this dependence.
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Existing work - Non optimized model

Cora with non-optimized version of AGE.
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Existing work - Unseen dataset

Amazon-photo. Hyperparameters not fine-tuned to the dataset.
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Proposed Algorithm :
Graph Expected Error
Minimization (GEEM)
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Proposed algorithm - GEEM

Expected Error Minimization (EEM)

Risk of q : The expected 0/1 error once added to Lt .
Denoted by R+q

|YLt
.

EEM selects the query q that minimizes this risk.

q∗ = arg min
q∈Ut

R+q
|YLt
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Proposed Algorithm - p(y |·)

All that remains is to define p(y |·)

Simplified GCN [3] : Removes non-linearities of GCNs to
obtain a linearized logistic regression model.

Set
p(yj = k |YL) = σ(x̃jWYL)(k)
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Results
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Results - GEEM

Cora. GEEM outperforms GCN-based methods even when GCN
hyperparameters are fine-tuned.
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Results - GEEM

Amazon-photo. GEEM significantly outperforms GCN-based methods.
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Conclusion

The proposed GEEM algorithm:

Offers SOTA performance.

Does not rely on validation set → More realistic scenario.

Additional contributions :

Combined GEEM : Hybrid mixed with LP covers more cases.

Preemptive GEEM (PreGEEM) : Take advantage of oracle
delay with approximations.
→ Provide bounds on the approximation error.
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