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e Access to unlabelled data.
e Query an oracle for labels/targets. — Expensive process.

Label / Target

? : ?
[VEVIRVIERV.VVIRVIRV.V.VEVIVIRVERVIEERVIV,
KK 00K K00 XXK XX XK

Feature Space

Goal: Choose optimal queries to maximize performance.
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Active Learning for Node Classification
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Active Learning Process

Pool-based active learning algorithm steps :

© PREDICT : Infer Y = f(X).
Trained on (X, Y,,) current labelled set L;.

O QUERY : Select g from the unlabelled set U;.
Update L1 = L£: U{q:} and U1 = U \ { gt}

| Repeat until the query budget B has been reached.
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GCN-based models

SOTA Active leaning strategies based on GCN output.
(AGE [1] and ANRMAB [2])

© PREDICT : Infer Y = £;(X).
— Run one epoch of GCN.
— Save the node embeddings output from the GCN.

Q@ QUERY Select g € U;.
— Select g based on metrics derived from GCN output.

[1] Cai et al. "Active learning for graph embedding” arXiv 2017
[2] Gao et al. "Active discriminative network representation learning” 1JCAI 2018
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Existing work - Results

GCN-based algorithms on Cora.
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Limitation : Deep learning models generally rely on
sizable validation set for hyperparameters tuning.
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Limitation : Deep learning models generally rely on
sizable validation set for hyperparameters tuning.

Results with non-optimized GCN
hyperparameter highlight this dependence.
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Existing work - Non optimized model

Accuracy

at
(e
|

401

Cora with non-optimized version of AGE.

______
-
-

I,,
I"“’
//
] AGE
AGE non optimized
---- ANRMAB
2 40 60

Number of nodes in labeled set

8/22



Existing work - Unseen dataset

Amazon-photo. Hyperparameters not fine-tuned to the dataset.
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Proposed Algorithm :
Graph Expected Error
Minimization (GEEM)
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Proposed algorithm - GEEM

Expected Error Minimization (EEM)
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Results

18/22



Results - GEEM

Cora. GEEM outperforms GCN-based methods even when GCN
hyperparameters are fine-tuned.
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Results - GEEM

Amazon-photo. GEEM significantly outperforms GCN-based methods.
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Conclusion

The proposed GEEM algorithm:
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Conclusion

The proposed GEEM algorithm:

@ Offers SOTA performance.

@ Does not rely on validation set — More realistic scenario.
Additional contributions :

@ Combined GEEM : Hybrid mixed with LP covers more cases.

e Preemptive GEEM (PreGEEM) : Take advantage of oracle
delay with approximations.
— Provide bounds on the approximation error.
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