GEEM : An algorithm for Active Learning on Attributed Graphs

Florence Regol*

Soumyasundar Pal*, Yingxue Zhang**, Mark Coates*

* McGill University Compnet Lab
**Huawei Noah's Ark Lab. Montreal Research Center

July 14th 2020

What is active learning?

Access to unlabelled data.

- Access to unlabelled data.
- Query an oracle for labels/targets.

- Access to unlabelled data.
- Query an oracle for labels/targets.

- Access to unlabelled data.
- Query an oracle for labels/targets. → Expensive process.

What is active learning?

- Access to unlabelled data.
- Query an oracle for labels/targets. → Expensive process.

Goal: Choose optimal queries to maximize performance.

Active Learning for Node Classification

Pool-based active learning algorithm steps:

Pool-based active learning algorithm steps:

1 PREDICT : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$.

Pool-based active learning algorithm steps:

Q PREDICT : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$. Trained on $(\mathbf{X}, \mathbf{Y}_{\mathcal{L}_t})$ current labelled set \mathcal{L}_t .

Pool-based active learning algorithm steps:

• PREDICT : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$. Trained on $(\mathbf{X}, \mathbf{Y}_{\mathcal{L}_t})$ current labelled set \mathcal{L}_t .

QUERY: Select q from the unlabelled set \mathcal{U}_t .

Pool-based active learning algorithm steps:

- **Q** PREDICT : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$. Trained on $(\mathbf{X}, \mathbf{Y}_{\mathcal{L}_t})$ current labelled set \mathcal{L}_t .
- **QUERY**: Select q from the unlabelled set \mathcal{U}_t . Update $\mathcal{L}_{t+1} = \mathcal{L}_t \cup \{q_t\}$ and $\mathcal{U}_{t+1} = \mathcal{U}_t \setminus \{q_t\}$.

Pool-based active learning algorithm steps:

- **Q** PREDICT : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$. Trained on $(\mathbf{X}, \mathbf{Y}_{\mathcal{L}_t})$ current labelled set \mathcal{L}_t .
- **QUERY**: Select q from the unlabelled set \mathcal{U}_t . Update $\mathcal{L}_{t+1} = \mathcal{L}_t \cup \{q_t\}$ and $\mathcal{U}_{t+1} = \mathcal{U}_t \setminus \{q_t\}$.

Repeat until the query budget \mathcal{B} has been reached.

GCN-based models

GCN-based models

GCN-based models

SOTA Active leaning strategies based on **GCN output**. (AGE [1] and ANRMAB [2])

1 PREDICT : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$.

GCN-based models

- **1 PREDICT** : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$.
 - \rightarrow Run one epoch of **GCN**.

GCN-based models

- **• PREDICT** : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$.
 - \rightarrow Run one epoch of **GCN**.
 - \rightarrow Save the **node embeddings output** from the **GCN**.

GCN-based models

- **1 PREDICT** : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$.
 - \rightarrow Run one epoch of **GCN**.
 - \rightarrow Save the **node embeddings output** from the **GCN**.
- **2 QUERY** Select $q \in \mathcal{U}_t$.

GCN-based models

- **1 PREDICT** : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$.
 - \rightarrow Run one epoch of **GCN**.
 - \rightarrow Save the **node embeddings output** from the **GCN**.
- **2 QUERY** Select $q \in \mathcal{U}_t$.
 - \rightarrow Select *q* based on metrics derived from **GCN** output.

GCN-based models

- **1 PREDICT** : Infer $\hat{\mathbf{Y}} = f_t(\mathbf{X})$.
 - \rightarrow Run one epoch of **GCN**.
 - → Save the node embeddings output from the GCN.
- **2 QUERY** Select $q \in \mathcal{U}_t$.
 - \rightarrow Select *q* based on metrics derived from **GCN** output.
- [1] Cai et al. "Active learning for graph embedding" arXiv 2017
- [2] Gao et al. "Active discriminative network representation learning" IJCAI 2018

Existing work - Results

GCN-based algorithms on Cora.

Limitation: Deep learning models generally rely on **sizable validation set** for hyperparameters tuning.

Limitation: Deep learning models generally rely on sizable validation set for hyperparameters tuning.

Results with **non-optimized GCN hyperparameter highlight this dependence**.

Existing work - Non optimized model

Cora with non-optimized version of **AGE**.

Existing work - Unseen dataset

Amazon-photo. Hyperparameters not fine-tuned to the dataset.

Proposed Algorithm: **Graph Expected Error Minimization (GEEM)**

Expected Error Minimization (EEM)

• Risk of q: The expected 0/1 error once added to \mathcal{L}_t .

- Risk of q: The expected 0/1 error once added to \mathcal{L}_t .
- Denoted by $R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q}$.

- Risk of q: The expected 0/1 error once added to \mathcal{L}_t .
- Denoted by $R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q}$.
- **EEM** selects the query *q* that **minimizes** this **risk**.

- Risk of q: The expected 0/1 error once added to \mathcal{L}_t .
- Denoted by $R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q}$.
- **EEM** selects the query *q* that **minimizes** this **risk**.

$$q^* = \operatorname*{arg\,min}_{q \in \mathcal{U}_t} R^{+q}_{|\mathbf{Y}_{\mathcal{L}_t}}$$

- Risk of q: The expected 0/1 error once added to \mathcal{L}_t .
- Denoted by $R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q}$.
- **EEM** selects the query *q* that **minimizes** this **risk**.

$$q^* = \operatorname*{arg\,min}_{q \in \mathcal{U}_t} R^{+q}_{|\mathbf{Y}_{\mathcal{L}_t}}$$

$$R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q} = \sum_{k \in K} \frac{1}{|\mathcal{U}_t^{-q}|} \sum_{i \in \mathcal{U}_t^{-q}} \left(1 - \max_{k' \in K} p(y_i = k'|Y_{\mathcal{L}_t}, y_q = k) \right) p(y_q = k|Y_{\mathcal{L}_t})$$

- Risk of q: The expected 0/1 error once added to \mathcal{L}_t .
- Denoted by $R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q}$.
- **EEM** selects the query *q* that **minimizes** this **risk**.

$$q^* = \operatorname*{arg\,min}_{q \in \mathcal{U}_t} R^{+q}_{|\mathbf{Y}_{\mathcal{L}_t}}$$

$$R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q} = \sum_{k \in K} \frac{1}{|\mathcal{U}_t^{-q}|} \sum_{i \in \mathcal{U}_t^{-q}} \left(1 - \max_{k' \in K} p(y_i = k' | Y_{\mathcal{L}_t}, y_q = k) \right) p(y_q = k | Y_{\mathcal{L}_t})$$

- Risk of q: The expected 0/1 error once added to \mathcal{L}_t .
- Denoted by $R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q}$.
- **EEM** selects the query *q* that **minimizes** this **risk**.

$$q^* = \operatorname*{arg\,min}_{q \in \mathcal{U}_t} R^{+q}_{|\mathbf{Y}_{\mathcal{L}_t}}$$

$$R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q} = \sum_{k \in \mathcal{K}} \frac{1}{|\mathcal{U}_t^{-q}|} \sum_{i \in \mathcal{U}_t^{-q}} \left(1 - \max_{k' \in \mathcal{K}} p(y_i = k'|Y_{\mathcal{L}_t}, y_q = k)\right) p(y_q = k|Y_{\mathcal{L}_t})$$

All that remains is to define $p(y|\cdot)$

All that remains is to define $p(y|\cdot)$

• Simplified GCN [3]: Removes non-linearities of GCNs to obtain a linearized logistic regression model.

All that remains is to define $p(y|\cdot)$

- Simplified GCN [3]: Removes non-linearities of GCNs to obtain a linearized logistic regression model.
- Set

$$p(y_j = k | \mathbf{Y}_{\mathcal{L}}) = \sigma(\tilde{\mathbf{x}}_{\mathbf{j}} \mathbf{W}_{\mathbf{Y}_{\mathcal{L}}})^{(k)}$$

All that remains is to define $p(y|\cdot)$

- Simplified GCN [3]: Removes non-linearities of GCNs to obtain a linearized logistic regression model.
- Set

$$p(y_j = k | \mathbf{Y}_{\mathcal{L}}) = \sigma(\tilde{\mathbf{x}}_{\mathbf{j}} \mathbf{W}_{\mathbf{Y}_{\mathcal{L}}})^{(k)}$$

GEEM :

$$R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q} = \sum_{k \in K} \frac{1}{|\mathcal{U}_t^{-q}|} \sum_{i \in \mathcal{U}^{-q}} (1 - \max_{k' \in K} \sigma(\tilde{\mathbf{x}}_{\mathbf{i}} \mathbf{W}_{\mathcal{L}_t, +q, y_k})^{(k')}) \sigma(\tilde{\mathbf{x}}_{\mathbf{q}} \mathbf{W}_{\underline{\mathbf{Y}}_{\mathcal{L}_t}})^{(k)}$$

All that remains is to define $p(y|\cdot)$

- Simplified GCN [3]: Removes non-linearities of GCNs to obtain a linearized logistic regression model.
- Set

$$p(y_j = k | \mathbf{Y}_{\mathcal{L}}) = \sigma(\tilde{\mathbf{x}}_{\mathbf{j}} \mathbf{W}_{\mathbf{Y}_{\mathcal{L}}})^{(k)}$$

GEEM :

$$R_{|\mathbf{Y}_{\mathcal{L}_t}}^{+q} = \sum_{k \in K} \frac{1}{|\mathcal{U}_t^{-q}|} \sum_{i \in \mathcal{U}^{-q}} (1 - \max_{k' \in K} \sigma(\tilde{\mathbf{x}}_i \mathbf{W}_{\mathcal{L}_t, +q, y_k})^{(k')}) \sigma(\tilde{\mathbf{x}}_\mathbf{q} \mathbf{W}_{\mathbf{Y}_{\mathcal{L}_t}})^{(k)}$$

Results

Results - GEEM

Cora. GEEM outperforms GCN-based methods even when GCN hyperparameters are fine-tuned.

Results - GEEM

Amazon-photo. GEEM significantly outperforms GCN-based methods.

The proposed GEEM algorithm:

The proposed GEEM algorithm:

• Offers SOTA performance.

The proposed GEEM algorithm:

- Offers SOTA performance.
- ullet Does not rely on validation set o More realistic scenario.

The proposed GEEM algorithm:

- Offers SOTA performance.
- ullet Does not rely on validation set o More realistic scenario.

Additional contributions:

The proposed GEEM algorithm:

- Offers SOTA performance.
- ullet Does not rely on validation set o More realistic scenario.

Additional contributions:

• Combined GEEM: Hybrid mixed with LP covers more cases.

The proposed GEEM algorithm:

- Offers SOTA performance.
- ullet Does not rely on validation set o More realistic scenario.

Additional contributions:

- Combined GEEM : Hybrid mixed with LP covers more cases.
- Preemptive GEEM (PreGEEM): Take advantage of oracle delay with approximations.

The proposed GEEM algorithm:

- Offers SOTA performance.
- ullet Does not rely on validation set o More realistic scenario.

Additional contributions:

- Combined GEEM: Hybrid mixed with LP covers more cases.
- Preemptive GEEM (PreGEEM): Take advantage of oracle delay with approximations.
 - \rightarrow Provide bounds on the approximation error.

References

- [1] H. Cai, V. W. Zheng, and K. C. Chang, "Active learning for graph embedding," arXiv preprint arXiv:1705.05085, 2017.
- [2] L. Gao, H. Yang, C. Zhou, J. Wu, S. Pan, and Y. Hu, "Active discriminative network representation learning," in *Proc. Int. Joint Conf.* Artificial Intell., 2018, pp. 2142–2148.
- [3] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, "Simplifying graph convolutional networks," in *Proc. Int. Conf. Machine Learning*, Long Beach, California, USA, Jun. 2019, pp. 6861–6871.