Learning the Valuations of a k-demand Agent

Hanrui Zhang
Vincent Conitzer

Duke University
this talk:

- optimal (up to lower order terms) algorithm for actively learning the valuations of a k demand agent
- algorithm with polynomial time \& sample complexity for passively learning the valuations of a k-demand agent

k-demand agents and demand sets

k-demand agent: demands a set of items of size $<=k$ maximizing her utility, i.e., total value - total price
demand set: the set of items the agent demands

Unit-demand agents

surplus:
\$4
\$7
\$3
agent buys:
x
x

k-demand agents and demand sets

value:
\$5
\$6
\$4
\$3
price:
\$4
\$3
\$2
\$2
agent is $\underline{2}$-demand - they want no more than 2 items

k-demand agents and demand sets

value:

\$5
\$6
\$4
\$3
price:
\$4
\$3
\$2
\$2
surplus:
\$1
\$3
\$2
\$1
2-demand agent buys:
\checkmark
x

k-demand agents and demand sets

value:
\$5
\$6
\$4
\$3
price:
\$4
\$3
\$2
\$2
surplus:
\$1
\$3
\$2
\$1
2-demand agent buys:

Demand queries

demand query: given a vector of

 prices, returns a demand set (which may not be unique)value:

$$
v_{1}=\$ 5
$$

$$
v_{2}=\$ 6
$$

price:

$$
\mathrm{p}_{1}=\$ 4
$$

$$
\mathrm{p}_{2}=\$ 2
$$

2-demand agent buys:

+2v)

$$
v_{3}=\$ 4 \quad v_{4}=\$ 3
$$

$$
\mathrm{p}_{3}=\$ 2
$$

$$
\mathrm{p}_{4}=\$ 2
$$

$\checkmark \quad x$

value:

$$
v_{1}=\$ 5
$$

$$
v_{2}=\$ 6
$$

$$
V_{3}=\$ 4
$$

$$
v_{4}=\$ 3
$$

price:
2-demand
agent buys: price:
2-demand
agent buys: price:
2-demand
agent buys:

$$
\begin{gathered}
\mathrm{p}_{1}=\$ 4 \\
x
\end{gathered}
$$

$$
\mathrm{p}_{2}=\$ 2
$$

$$
\mathrm{p}_{3}=\$ 2
$$

$$
p_{4}=\$ 2
$$

price: $\quad \mathrm{p}_{1}=\$ 2 \quad \mathrm{p}_{2}=\$ 5 \quad \mathrm{p}_{3}=\$ 3 \quad \mathrm{p}_{4}=\$ 1.5$
2-demand agent buys:
price:

$$
\mathrm{p}_{1}=\$ 2
$$

x
value:

$$
v_{1}=\$ 5
$$

$$
V_{2}=\$ 6 \quad V_{3}=\$ 4 \quad V_{4}=\$ 3
$$

price:

$$
\mathrm{p}_{2}=\$ 2
$$

$$
\mathrm{P}_{3}=\$ 2
$$

2-demand agent buys:

$$
\mathrm{p}_{1}=\$ 4
$$

$$
\mathrm{p}_{4}=\$ 2
$$

price:

$$
\mathrm{p}_{2}=\$ 5
$$

2-demand agent buys:

$$
\mathrm{p}_{1}=\$ 2
$$

$$
\mathrm{P}_{3}=\$ 3
$$

$$
\mathrm{p}_{4}=\$ 1.5
$$

price:

$$
\mathrm{p}_{1}=\$ 7
$$

$$
\mathrm{p}_{2}=\$ 3.5
$$

$$
\mathrm{p}_{3}=\$ 5.5
$$

$$
\mathrm{p}_{4}=\$ 4
$$

2-demand agent buys:

Actively learning the valuations

- suppose there are \underline{n} items, and the value \underline{v}_{i} of each item is an integer between 1 and W
- how many demand queries suffice to learn the full valuations (i.e., $\left.\left(v_{i}\right)_{i}\right)$ of a k-demand agent?
- spoiler: optimal number of queries is

$$
(n \log W) /(k \log (n / k))+n / k \pm o(\ldots)
$$

Sketch of lower bound

$(n \log W) /(k \log (n / k))+n / k \pm o(\ldots)$

amount of
information
encoded in $\left(v_{i}\right)$ i
maximum amount
of information
per query

Sketch of lower bound

$(n \log W) /(k \log (n / k))+n / k \pm o(\ldots)$
necessary in the following case:

- exactly one item is special, which has value 0
- all other items have value 1
- the special item is chosen uniformly at random

Sketch of upper bound

- warmup: $\mathrm{n}=\mathrm{k}=1$
- need to learn: a single number v_{1} in $\{1,2, \ldots, W\}$
- query: given p , returns whether $\mathrm{p}<\mathrm{v}_{1}$
- optimal solution: binary search - log W queries

Sketch of upper bound

- slight generalization: $\mathrm{n}=\mathrm{k}(=1)$
- need to learn: a vector $\left(v_{i}\right)_{i}$ of integers in $\{1,2, \ldots, W\}$
- query: given $\left(p_{i}\right)_{i}$, returns, for each item i , whether $\mathrm{p}_{\mathrm{i}}<\mathrm{v}_{\mathrm{i}}$
- optimal solution: simultaneous binary search - log W queries

Sketch of upper bound

- general case: $n \geq k \geq 1$
- straightforward solution: (1) divide items into groups of
size k, and (2) perform simultaneous binary search for each group sequentially
- (n / k) log W queries
- LB is $(\mathrm{n} \log \mathrm{W}) /(\mathrm{k} \log (\mathrm{n} / \mathrm{k}))$ - can we do better?

Sketch of upper bound

idea: biased binary search

- learn v_{1} using log W queries, use item 1 as reference
- in each query, post $p_{1}=v_{1}-0.5$, so item 1 is marginally
attractive
- for all other items, post biased (rather than middle-of-possible-range) prices

Sketch of upper bound

Sketch of upper bound

Sketch of upper bound

- in each query, post $p_{1}=v_{1}-0.5$, so item 1 is marginally

attractive

- for all other items, post biased (rather than middle-ofpossible range) prices
- if item 1 in demand set: many items are overpriced; shrink their possible ranges by a little
- if item 1 not in demand set: a few items are underpriced; shrink their possible ranges by a lot

Sketch of upper bound

if item 1 in demand set: many items are overpriced; shrink their possible ranges by a little

Sketch of upper bound

if item 1 in demand set: many items are overpriced; shrink their possible ranges by a little

Sketch of upper bound

if item 1 in demand set: many items are overpriced; shrink their possible ranges by a little

Sketch of upper bound

if item 1 not in demand set: $\underline{\text { a few }}$ items are underpriced; shrink their possible ranges by a lot

Sketch of upper bound

if item 1 not in demand set: $\underline{\text { a few }}$ items are underpriced; shrink their possible ranges by a lot

Sketch of upper bound

if item 1 not in demand set: $\underline{\text { a few }}$ items are underpriced; shrink their possible ranges by a lot

Sketch of upper bound

- if item 1 in demand set: many items are overpriced; shrink their possible ranges by a little
- if item 1 not in demand set: a few items are underpriced; shrink their possible ranges by a lot
- adjust bias to equalize information gain
- larger information gain (~ k log (n / k)) in both cases!
- so far: tight UB \& LB for active learning
- next: (very brief discussion of) computation \& sample efficient algorithm for passive learning

Passively learning valuations

- prices are distributed according to a distribution \mathscr{D}
- true valuations v: a vector of real numbers
- algorithm observes m iid sample price vectors pi together with demand set Sj under pi
- given $\left\{\left(\mathrm{Si}^{\mathrm{i}}, \mathrm{p}\right)\right\}$, algorithm outputs a hypothesis vector h which recovers v in a PAC sense - algorithm succeeds with probability $1-\delta$, in which case with probability $1-\boldsymbol{\varepsilon}$, demand set under (v, p) = demand set under (h, p)

Passively learning valuations

- idea: empirical risk minimization
- tool: multiclass ERM principle \& Natarajan dimension
- treat problem as multiclass classification with < n^{k} labels
- hypothesis class has Natarajan dimension n
- sample complexity is poly(n, $\mathrm{k}, \log (1 / \delta), 1 / \boldsymbol{\varepsilon})$
- solving ERM = finding a feasible solution to an LP

Future directions

- more general valuations, e.g., matroid-demand
- tighter sample complexity bounds for passive learning

Thanks for your attention!

Questions?

Related research

- in economic theory: learning utility functions from revealed preferences (Samuelson, 1938; Afriat, 1967; Beigman \& Vohra, 2006; ...)
- in CS: preference elicitation (Blum et al., 2004; Lahaie \& Parkes, 2004; Sandholm \& Boutilier, 2006; ...)

