
Learning the Valuations
of a k-demand Agent

Hanrui Zhang Vincent Conitzer
!

Duke University

this talk:

• optimal (up to lower order terms) algorithm
for actively learning the valuations of a k-
demand agent

• algorithm with polynomial time & sample
complexity for passively learning the
valuations of a k-demand agent

k-demand agent: demands a set of items
of size <=k maximizing her utility, i.e.,

total value - total price
!

demand set: the set of items the agent
demands

k-demand agents and
demand sets

Unit-demand agents

value:

price:

$10 $12 $8

$6 $5 $5

surplus: $4 $7 $3

agent buys: ✘ ✔ ✘

k-demand agents and
demand sets

value:

price:

$5 $6 $4 $3

$4 $3 $2 $2

agent is 2-demand — they want no more than 2 items

k-demand agents and
demand sets

value:

price:

$5

surplus:
2-demand

agent buys:

$6 $4 $3

$4 $3 $2 $2

$1 $3 $2 $1

✘ ✔ ✔ ✘

k-demand agents and
demand sets

value:

price:

$5

surplus:
2-demand

agent buys:

$6 $4 $3

$4 $3 $2 $2

$1 $3 $2 $1

✘ ✔ ✔ ✘

demand set

Demand queries

demand query: given a vector of
prices, returns a demand set
(which may not be unique)

value:

price:

v1 = $5

2-demand
agent buys:

v2 = $6 v3 = $4 v4 = $3

p1 = $4 p2 = $2 p3 = $2 p4 = $2

✘ ✔ ✔ ✘

value:

price:
2-demand

agent buys:

p1 = $4 p2 = $2 p3 = $2 p4 = $2

✘ ✔ ✔ ✘

price:
2-demand

agent buys:

p1 = $2 p2 = $5 p3 = $3 p4 = $1.5

✔ ✘ ✘ ✔

v1 = $5 v2 = $6 v3 = $4 v4 = $3

value:

price:
2-demand

agent buys:

p1 = $7 p2 = $3.5 p3 = $5.5 p4 = $4

✘ ✔ ✘ ✘

price:
2-demand

agent buys:

p1 = $4 p2 = $2 p3 = $2 p4 = $2

✘ ✔ ✔ ✘

price:
2-demand

agent buys:

p1 = $2 p2 = $5 p3 = $3 p4 = $1.5

✔ ✘ ✘ ✔

v1 = $5 v2 = $6 v3 = $4 v4 = $3

Actively learning the
valuations

• suppose there are n items, and the value vi of each
item is an integer between 1 and W

• how many demand queries suffice to learn the full
valuations (i.e., (vi)i) of a k-demand agent?

• spoiler: optimal number of queries is

(n log W) / (k log (n / k)) + n / k ± o(…)

(n log W) / (k log (n / k)) + n / k ± o(…)

Sketch of lower bound

amount of
information

encoded in (vi)i

maximum amount
of information

per query

(n log W) / (k log (n / k)) + n / k ± o(…)

necessary in the following case:
• exactly one item is special, which has value 0
• all other items have value 1
• the special item is chosen uniformly at random

Sketch of lower bound

Sketch of upper bound

• warmup: n = k = 1

• need to learn: a single number v1 in {1, 2, …, W}

• query: given p, returns whether p < v1

• optimal solution: binary search — log W queries

Sketch of upper bound
• slight generalization: n = k (= 1)

• need to learn: a vector (vi)i of integers in {1, 2, …, W}

• query: given (pi)i, returns, for each item i, whether pi < vi

• optimal solution: simultaneous binary search — log W

queries

Sketch of upper bound
• general case: n ≥ k ≥ 1

• straightforward solution: (1) divide items into groups of

size k, and (2) perform simultaneous binary search for

each group sequentially

• (n / k) log W queries

• LB is (n log W) / (k log (n / k)) — can we do better?

Sketch of upper bound
idea: biased binary search

• learn v1 using log W queries, use item 1 as reference

• in each query, post p1 = v1 - 0.5, so item 1 is marginally

attractive

• for all other items, post biased (rather than middle-of-

possible-range) prices

Sketch of upper bound

0

25

50

75

100

item 1 item 2 item 3 item 4

n = 4
k = 1

v1

Sketch of upper bound

0

25

50

75

100

item 1 item 2 item 3 item 4

p1 = v1 - 0.5

p2

p3

p4

n = 4
k = 1

prices biased toward higher
end of possible ranges

Sketch of upper bound
• in each query, post p1 = v1 - 0.5, so item 1 is marginally

attractive
• for all other items, post biased (rather than middle-of-

possible range) prices
• if item 1 in demand set: many items are overpriced;

shrink their possible ranges by a little
• if item 1 not in demand set: a few items are underpriced;

shrink their possible ranges by a lot

Sketch of upper bound

0

25

50

75

100

item 1 item 2 item 3 item 4

p1 = v1 - 0.5

p2

p3

p4

n = 4
k = 1

if item 1 in demand set: many items are overpriced; shrink
their possible ranges by a little

Sketch of upper bound

0

25

50

75

100

item 1 item 2 item 3 item 4

p1 = v1 - 0.5

p2

p3

p4

n = 4
k = 1

if item 1 in demand set: many items are overpriced; shrink
their possible ranges by a little

Sketch of upper bound

0

25

50

75

100

item 1 item 2 item 3 item 4

p1 = v1 - 0.5

p2

p3

p4

n = 4
k = 1

if item 1 in demand set: many items are overpriced; shrink
their possible ranges by a little

Sketch of upper bound

0

25

50

75

100

item 1 item 2 item 3 item 4

p1 = v1 - 0.5

p2

p3

p4

n = 4
k = 1

if item 1 not in demand set: a few items are underpriced;
shrink their possible ranges by a lot

Sketch of upper bound

0

25

50

75

100

item 1 item 2 item 3 item 4

p1 = v1 - 0.5

p2

p3

p4

n = 4
k = 1

if item 1 not in demand set: a few items are underpriced;
shrink their possible ranges by a lot

Sketch of upper bound

0

25

50

75

100

item 1 item 2 item 3 item 4

p1 = v1 - 0.5

p2

p3

p4

n = 4
k = 1

if item 1 not in demand set: a few items are underpriced;
shrink their possible ranges by a lot

Sketch of upper bound

• if item 1 in demand set: many items are overpriced;
shrink their possible ranges by a little

• if item 1 not in demand set: a few items are underpriced;
shrink their possible ranges by a lot

• adjust bias to equalize information gain
• larger information gain (~ k log (n / k)) in both cases!

• so far: tight UB & LB for active learning

• next: (very brief discussion of)
computation & sample efficient algorithm
for passive learning

Passively learning valuations
• prices are distributed according to a distribution 𝒟

• true valuations v: a vector of real numbers
• algorithm observes m iid sample price vectors pj

together with demand set Sj under pj
• given {(Sj, pj)}, algorithm outputs a hypothesis vector h

which recovers v in a PAC sense — algorithm succeeds

with probability 1 - 𝛿, in which case with probability 1 - 𝛆,

demand set under (v, p) = demand set under (h, p)

Passively learning valuations

• idea: empirical risk minimization
• tool: multiclass ERM principle & Natarajan dimension
• treat problem as multiclass classification with < nk labels
• hypothesis class has Natarajan dimension n

• sample complexity is poly(n, k, log(1 / 𝛿), 1 / 𝛆)

• solving ERM = finding a feasible solution to an LP

Future directions

• more general valuations, e.g., matroid-demand

• tighter sample complexity bounds for passive learning

Thanks for your attention!
Questions?

• in economic theory: learning utility functions from
revealed preferences (Samuelson, 1938; Afriat, 1967;
Beigman & Vohra, 2006; …)

• in CS: preference elicitation (Blum et al., 2004; Lahaie
& Parkes, 2004; Sandholm & Boutilier, 2006; …)

Related research

