Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization

¹Geoffrey Négiar, ²Gideon Dresdner, ¹Alicia Yi-Ting Tsai, ^{1,5}Laurent El Ghaoui, ²Francesco Locatello, ³Robert Freund, ⁴Fabian Pedregosa

June 12th, 2020. ICML, Online

¹University of California, Berkeley ²ETH, Zurich ³MIT ⁴Google Research, Montréal ⁵SumUp Analytics

Motivation: Obtain a practical, fast version of Stochastic Frank-Wolfe.

Motivation: Obtain a practical, fast version of Stochastic Frank-Wolfe.

- 1. Frank-Wolfe algorithm. What is it and when is it used?
- 2. **Stochastic Frank-Wolfe**. Making Stochastic Frank-Wolfe practical: a primal-dual view.
- 3. Results. Convergence rates in theory and in practice.

The Frank-Wolfe algorithm

Problem: smooth f, compact and convex D

 $\arg\min_{\boldsymbol{x}\in\mathcal{D}}f(\boldsymbol{x})$

Algorithm 1: Frank-Wolfe (FW)

1 for t = 0, 1... do

$$s_t \in \mathsf{arg\,min}_{s \in \mathcal{D}} \langle
abla f(m{x}_t), m{s}
angle$$

3 Find step-size γ_t .

$$\boldsymbol{x}_{t+1} = (1 - \gamma_t) \boldsymbol{x}_t + \gamma_t \boldsymbol{s}_t$$

Problem: smooth f, compact and convex D

 $\arg\min_{\boldsymbol{x}\in\mathcal{D}}f(\boldsymbol{x})$

Algorithm 1: Frank-Wolfe (FW)

1 for t = 0, 1... do

2
$$s_t \in rgmin_{s \in \mathcal{D}} \langle
abla f(m{x}_t), m{s} \rangle$$

3 Find step-size γ_t .

$$\boldsymbol{x}_{t+1} = (1 - \gamma_t) \boldsymbol{x}_t + \gamma_t \boldsymbol{s}_t$$

Problem: smooth f, compact and convex D

 $\arg\min_{\boldsymbol{x}\in\mathcal{D}}f(\boldsymbol{x})$

Algorithm 1: Frank-Wolfe (FW)

1 for t = 0, 1... do

2
$$s_t \in rgmin_{s \in \mathcal{D}} \langle
abla f(m{x}_t), m{s} \rangle$$

3 Find step-size γ_t .

$$\mathbf{x}_{t+1} = (1 - \gamma_t) \mathbf{x}_t + \gamma_t \mathbf{s}_t$$

Problem: smooth f, compact and convex D

 $\arg\min_{\boldsymbol{x}\in\mathcal{D}}f(\boldsymbol{x})$

Algorithm 1: Frank-Wolfe (FW)

1 for t = 0, 1... do

$$s_t \in \mathsf{arg\,min}_{s \in \mathcal{D}} \langle
abla f(m{x}_t), m{s}
angle$$

3 Find step-size γ_t .

$$\mathbf{x}_{t+1} = (1 - \gamma_t) \mathbf{x}_t + \gamma_t \mathbf{s}_t$$

Problem: smooth f, compact and convex D

 $\arg\min_{\boldsymbol{x}\in\mathcal{D}}f(\boldsymbol{x})$

Algorithm 1: Frank-Wolfe (FW)

1 for t = 0, 1... do

$$s_t \in \mathsf{arg\,min}_{s \in \mathcal{D}} \langle
abla f(m{x}_t), m{s}
angle$$

3 Find step-size γ_t .

$$\boldsymbol{x}_{t+1} = (1 - \gamma_t) \boldsymbol{x}_t + \gamma_t \boldsymbol{s}_t$$

• **Projection-free**. Linear subproblems vs. quadratic for projected gradient descent (PGD).

$$\min_{x \in \mathcal{D}} g^\top x \qquad \text{vs.} \qquad \min_{x \in \mathcal{D}} \|y - x\|_2^2$$

• **Projection-free**. Linear subproblems vs. quadratic for projected gradient descent (PGD).

$$\min_{x \in \mathcal{D}} g^\top x \qquad \text{vs.} \qquad \min_{x \in \mathcal{D}} \|y - x\|_2^2$$

• Solution of linear subproblem: extremal element of \mathcal{D} .

• **Projection-free**. Linear subproblems vs. quadratic for projected gradient descent (PGD).

 $\min_{x \in \mathcal{D}} g^\top x \qquad \text{vs.} \qquad \min_{x \in \mathcal{D}} \|y - x\|_2^2$

- Solution of linear subproblem: extremal element of \mathcal{D} .
- **Sparse** representation: *x*_t convex combination of at most *t* elements.

• **Projection-free**. Linear subproblems vs. quadratic for projected gradient descent (PGD).

$$\min_{x \in \mathcal{D}} g^\top x \qquad \text{vs.} \qquad \min_{x \in \mathcal{D}} \|y - x\|_2^2$$

- Solution of linear subproblem: extremal element of \mathcal{D} .
- **Sparse** representation: x_t convex combination of at most t elements.

Recent Applications

- Learning the structure of a neural network. Ping, Liu, and Ihler, 2016
- Attention mechanisms that enforce sparsity. Niculae, 2018
- *l*₁-constrained problems with extreme number of features. Kerdreux, Pedregosa, and d'Aspremont, 2018

- For large *n* (number of samples), we need a Stochastic variant of FW
- Naïve SGD-like algorithm fails in practice and in theory
- State of the art bounds on suboptimality after t iterations: O(n/t) and O(1/³√t) Lu and Freund, 2020; Mokhtari, Hassani, and Karbasi, 2018

- For large *n* (number of samples), we need a Stochastic variant of FW
- Naïve SGD-like algorithm fails in practice and in theory
- State of the art bounds on suboptimality after t iterations: O(n/t) and O(1/³√t) Lu and Freund, 2020; Mokhtari, Hassani, and Karbasi, 2018

Can we do better?

Practical Stochastic Frank-Wolfe: a primal-dual point of view

Problem setting:

Let us add some structure: finite sum, and linear prediction

OPT :
$$\min_{w \in C} \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}_i^\top \mathbf{w})$$

- $f_i(\cdot)$ is the univariate loss function of observation/sample *i* for $i \in [n]$
- *n* is the number of observations/samples
- $\mathcal{C} \subset \mathbb{R}^d$ is a compact convex set
- d is the order (dimension) of the model variable ${m w}$

The particular structural dependence of the losses on $\mathbf{x}_i^{\top} \mathbf{w}$ is a model with "generalized linear structure" or "linear prediction"

Deterministic FW: Gradient Computation for OPT

OPT

$$f^* := \min_{\boldsymbol{w} \in \mathcal{C}} F(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{x}_i^\top \boldsymbol{w})$$

Assumptions

- $f_i(\cdot)$ is L-smooth for $i \in [n]$: $\forall z, z'$, $|f'_i(z) f'_i(z')| \le L|z z'|$
- Linear Minimization Oracle LMO(r): $s \leftarrow \arg \min_{w \in C} \langle r, w \rangle$

Denote $\boldsymbol{X} := [\boldsymbol{x}_1^\top; \boldsymbol{x}_2^\top; \dots; \boldsymbol{x}_n^\top]$

Gradient Computation

$$\nabla F(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i \cdot f'_i(\boldsymbol{x}_i^{\top} \boldsymbol{w}) = \boldsymbol{X}^{\top} \boldsymbol{\alpha} \text{ where } \boldsymbol{\alpha}^i \leftarrow \frac{1}{n} f'_i(\boldsymbol{x}_i^{\top} \boldsymbol{w}), \ i \in [n]$$

Gradient computation is O(nd) operations (expensive when $n \gg 0...$)

Frank-Wolfe for OPT:

OPT

$$f^* := \min_{\boldsymbol{w} \in \mathcal{C}} F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{x}_i^\top \boldsymbol{w})$$

Frank-Wolfe algorithm for OPT:

Initialize at $\textbf{\textit{w}}_0 \in \mathcal{C}$, $t \leftarrow 0$.

At iteration t:

1. Compute $\nabla F(\boldsymbol{w}_{t-1})$:

• $\boldsymbol{\alpha}_{t}^{i} \leftarrow \frac{1}{n} f_{i}^{\prime}(\boldsymbol{x}_{i}^{\top} \boldsymbol{w}_{t-1})$ for EVERY $i \in [n]$

•
$$\boldsymbol{r}_t = \boldsymbol{X}^\top \boldsymbol{\alpha}_t \ (= \nabla F(\boldsymbol{w}_{t-1}))$$

- 2. Compute $\boldsymbol{s}_t \leftarrow \text{LMO}(\boldsymbol{r}_t)$.
- 3. Set $\boldsymbol{w}_t \leftarrow \boldsymbol{w}_{t-1} + \gamma_t (\boldsymbol{s}_t \boldsymbol{w}_{t-1})$, where $\gamma_t \in [0, 1]$.

Iteration cost is O(nd) operations (expensive when $n \gg 0 \dots$)

A Naïve Frank-Wolfe (SFW) Strategy

OPT

$$f^* := \min_{\boldsymbol{w} \in \mathcal{C}} F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{x}_i^\top \boldsymbol{w})$$

Frank-Wolfe algorithm for OPT:

Initialize at $\boldsymbol{w}_0 \in \mathcal{C}$, $t \leftarrow 0$.

At iteration t :

1. Compute $\nabla F(\boldsymbol{w}_{t-1})$:

• $\alpha_t^i \leftarrow \frac{1}{n} f_i'(\mathbf{x}_i^\top \mathbf{w}_{t-1})$ for ONE $i \in [n]$ $(\alpha_t^j = 0$ for $j \neq i)$

•
$$\boldsymbol{r}_t = \boldsymbol{X}^\top \boldsymbol{\alpha}_t \left(= \boldsymbol{x}_i f_i'(\boldsymbol{x}_i^\top \boldsymbol{w}_{t-1})\right)$$

- 2. Compute $\boldsymbol{s}_t \leftarrow \text{LMO}(\boldsymbol{r}_t)$.
- 3. Set $\boldsymbol{w}_t \leftarrow \boldsymbol{w}_{t-1} + \gamma_t (\boldsymbol{s}_t \boldsymbol{w}_{t-1})$, where $\gamma_t \in [0, 1]$.

Our Frank-Wolfe (SFW) Strategy

OPT

$$f^* := \min_{\boldsymbol{w} \in \mathcal{C}} F(\boldsymbol{w}) := \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{x}_i^\top \boldsymbol{w})$$

Frank-Wolfe algorithm for OPT:

Initialize at $\boldsymbol{w}_0 \in \mathcal{C}$, $t \leftarrow 0$.

At iteration t:

1. Compute $\nabla F(\boldsymbol{w}_{t-1})$:

• $\boldsymbol{\alpha}_{t}^{i} \leftarrow \frac{1}{n} f_{i}^{\prime}(\boldsymbol{x}_{i}^{\top} \boldsymbol{w}_{t-1})$ for ONE $i \in [n]$ $(\boldsymbol{\alpha}_{t}^{j} = \boldsymbol{\alpha}_{t-1}^{j}$ for $j \neq i$) • $\boldsymbol{r}_{t} = \boldsymbol{X}^{\top} \boldsymbol{\alpha}_{t} (= \boldsymbol{r}_{t-1} + \boldsymbol{x}_{i} (\boldsymbol{\alpha}_{t}^{i} - \boldsymbol{\alpha}_{t-1}^{i}))$

- 2. Compute $\boldsymbol{s}_t \leftarrow \text{LMO}(\boldsymbol{r}_t)$.
- 3. Set $\boldsymbol{w}_t \leftarrow \overline{\boldsymbol{w}_{t-1} + \gamma_t(\boldsymbol{s}_t \boldsymbol{w}_{t-1})}$, where $\gamma_t \in [0, 1]$.

Iteration cost is O(d) operations! Memory cost is O(d + n)

Motivation: a Primal-Dual Lens for Constructing FW

Recall the definition of the *conjugate* of a function f:

$$f^*(\boldsymbol{lpha}) := \max_{\boldsymbol{x} \in \mathsf{dom}f(\cdot)} \{ \boldsymbol{lpha}^\top \boldsymbol{x} - f(\boldsymbol{x}) \}$$

- If f is a closed convex function, then $f^{**} = f$
- $f(\pmb{x}) := \max_{\pmb{lpha} \in \mathsf{dom}\, f^*(\cdot)} \{ \pmb{lpha}^ op \pmb{x} f^*(\pmb{lpha}) \}$, and
- When f is differentiable, it holds that

$$abla f(oldsymbol{x}) \leftarrow lpha \; \; ext{where} \; \; lpha \leftarrow lpha ext{gmax} \left\{eta^ op oldsymbol{x} - f^*(eta)
ight\} \, .$$

Motivation: a Primal-Dual Lens for Constructing FW

Using conjugacy we can reformulate **OPT** as:

$$\mathsf{OPT:}\min_{\boldsymbol{w}\in\mathcal{C}}f(\boldsymbol{X}\boldsymbol{w}) = \min_{\boldsymbol{w}\in\mathcal{C}}\max_{\boldsymbol{\alpha}\in\mathbb{R}^n}\left\{\mathcal{L}(\boldsymbol{w},\boldsymbol{\alpha})\stackrel{\mathrm{def}}{=}\langle\boldsymbol{X}\boldsymbol{w},\boldsymbol{\alpha}\rangle - f^*(\boldsymbol{\alpha})\right\}$$

Given w_{t-1} we construct the gradient of f(Xw) at w_{t-1} by maximizing over the dual variable α :

$$egin{aligned} oldsymbol{lpha}_t \in rgmax_{oldsymbol{lpha} \in \mathbb{R}^n} & \{\mathcal{L}(oldsymbol{w}_{t-1},oldsymbol{lpha}) = \langle oldsymbol{X}oldsymbol{w}_{t-1},oldsymbol{lpha}
angle - f^*(oldsymbol{lpha}) \} \ & \Longleftrightarrow &
abla f(oldsymbol{X}oldsymbol{w}_{t-1}) = oldsymbol{X}^ op oldsymbol{lpha}_t \end{aligned}$$

Then the LMO step corresponds to fixing the dual variable and minimizing over the primal variable w:

$$egin{aligned} m{s}_t \leftarrow rgmin_{m{w} \in \mathcal{C}} \left\{ \mathcal{L}(m{w}, m{lpha}_t) = \langle m{w}, m{X}^ op m{lpha}_t
angle - f^*(m{lpha}_t)
ight\} \ & \iff m{s}_t \leftarrow \mathsf{LMO}(m{X}^ op m{lpha}_t) \end{aligned}$$

Results: Practice and Theory

Experiments RCV1

Problem: ℓ_1 -constrained logistic regression

$$\underset{\|\boldsymbol{x}\|_{1} \leq \alpha}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \varphi(\boldsymbol{a}_{i}^{\top} \boldsymbol{x}, b_{i}) \text{ with } \varphi = \text{logistic loss.}$$

Dataset	dimension	#samples
RCV1	47236	20463

Experiments MovieLens 1M

Problem: trace-norm constrained robust matrix completion

$$\underset{\|\boldsymbol{x}\|_{*} \leq \alpha}{\operatorname{arg\,min}} \frac{1}{|B|} \sum_{(i,j) \in B}^{n} h(\boldsymbol{X}_{i,j}, \boldsymbol{A}_{i,j}) \text{ with } h = \operatorname{Huber loss.}$$

Define the
$$\ell_p$$
 norm "diameter" of $\mathcal C$ to be $D_p := \max_{oldsymbol{w},oldsymbol{v}\in\mathcal C} \|oldsymbol{X}(oldsymbol{w}-oldsymbol{v})\|_p$

Theorem: Computational Complexity of Novel Stochastic Frank-Wolfe Algorithm

Let $H_0 \stackrel{\text{def}}{=} \|\boldsymbol{\alpha}_0 - \nabla f(\boldsymbol{X} \boldsymbol{w}_0)\|_1$ be the initial error of the gradient ∇f , and let the step-size rule be $\gamma_t = \frac{2}{t+2}$. For $t \ge 2$, it holds that:

 $(\iota + I)(\iota + Z)$

Let us see what this bound is really about

2)

$$\ell_p$$
 norm "diameter" of \mathcal{C} is $D_p := \max_{w, v \in \mathcal{C}} \| X(w - v) \|_p$

Define Ratio $:= D_1/D_\infty$ and note that Ratio $\le n$

The expected optimality gap bound is:

$$\frac{2(f(\boldsymbol{X} \boldsymbol{w}_0) - f^*)}{(t+1)(t+2)} + \left[2LD_2^2\left(\frac{1}{n}\right) + 8LD_1D_{\infty}\left(\frac{n-1}{n}\right)\right]\left(\frac{1}{t}\right) + \frac{(2D_{\infty}H_0 + 64LD_1D_{\infty})n^2}{(t+1)(t+2)}$$

$$= O\left(\frac{f(\boldsymbol{X}\boldsymbol{w}_0) - f^*}{t^2}\right) + O\left(\frac{LD_{\infty}^2(1 + \text{Ratio})}{t}\right) + O\left(\left(D_{\infty}H_0 + LD_{\infty}^2\text{Ratio}\right)\left(\frac{n^2}{t^2}\right)\right)$$

 $\leq O\left(rac{LD_{\infty}^2\mathsf{Ratio}}{t}
ight) \leq O\left(rac{n}{t}
ight)$

$$\ell_p$$
 norm "diameter" of C is $D_p := \max_{w, v \in C} \|X(w - v)\|_p$

Define Ratio := D_1/D_∞ and note that Ratio $\leq n$

The expected optimality gap bound is:

$$\frac{2(I(Xw_0) - I^*)}{(t+1)(t+2)} + \left[2LD_2^2\left(\frac{1}{n}\right) + 8LD_1D_{\infty}\left(\frac{n-1}{n}\right)\right]\left(\frac{1}{t}\right) + \frac{(2D_{\infty}H_0 + 64LD_1D_{\infty})n^2}{(t+1)(t+2)}$$
$$= O\left(\frac{f(Xw_0) - f^*}{t^2}\right) + O\left(\frac{LD_{\infty}^2(1 + \text{Ratio})}{t}\right) + O\left(\left(D_{\infty}H_0 + LD_{\infty}^2\text{Ratio}\right)\left(\frac{n^2}{t^2}\right)\right)$$

 $\leq O\left(\frac{LD_{\infty}^2\mathsf{Ratio}}{t}\right) \leq O\left(\frac{n}{t}\right)$

$$\ell_p$$
 norm "diameter" of $\mathcal C$ is $D_p := \max_{oldsymbol{w},oldsymbol{v}\in\mathcal C} \|oldsymbol{X}(oldsymbol{w}-oldsymbol{v})\|_p$

Define Ratio $:= D_1/D_{\infty}$ and note that Ratio $\leq n$

The expected optimality gap bound is:

$$\frac{2(f(\boldsymbol{X}\boldsymbol{w}_{0}) - f^{*})}{(t+1)(t+2)} + \left[2LD_{2}^{2}\left(\frac{1}{n}\right) + 8LD_{1}D_{\infty}\left(\frac{n-1}{n}\right)\right]\left(\frac{1}{t}\right) + \frac{(2D_{\infty}H_{0} + 64LD_{1}D_{\infty})n^{2}}{(t+1)(t+2)}$$

$$= O\left(\frac{f(\boldsymbol{X}\boldsymbol{w}_0) - f^*}{t^2}\right) + O\left(\frac{LD_{\infty}^2(1 + \text{Ratio})}{t}\right) + O\left(\left(D_{\infty}H_0 + LD_{\infty}^2\text{Ratio}\right)\left(\frac{n^2}{t^2}\right)\right)$$

$$\leq O\left(\frac{LD_{\infty}^2 \operatorname{Ratio}}{t}\right) \leq O\left(\frac{n}{t}\right)$$

$$\ell_p$$
 norm "diameter" of C is $D_p := \max_{w, v \in C} \|X(w - v)\|_p$

Define Ratio := D_1/D_∞ and note that Ratio $\leq n$

The expected optimality gap bound is:

$$\frac{2(f(Xw_0) - f^*)}{(t+1)(t+2)} + \left[2LD_2^2(\frac{1}{n}) + 8LD_1D_\infty(\frac{n-1}{n})\right](\frac{1}{t}) + \frac{(2D_\infty H_0 + 64LD_1D_\infty)n^2}{(t+1)(t+2)}$$

$$= O\left(\frac{f(\boldsymbol{X}\boldsymbol{w}_0) - f^*}{t^2}\right) + O\left(\frac{LD_{\infty}^2(1 + \text{Ratio})}{t}\right) + O\left(\left(D_{\infty}H_0 + LD_{\infty}^2\text{Ratio}\right)\left(\frac{n^2}{t^2}\right)\right)$$

 $\leq O\left(rac{LD_{\infty}^2\mathsf{Ratio}}{t}
ight) \leq O\left(rac{n}{t}
ight)$

$$\ell_p$$
 norm "diameter" of C is $D_p := \max_{\boldsymbol{w}, \boldsymbol{v} \in C} \|\boldsymbol{X}(\boldsymbol{w} - \boldsymbol{v})\|_p$

Define Ratio $:= D_1/D_\infty$ and note that Ratio $\le n$

The expected optimality gap bound is:

$$\frac{2(f(\boldsymbol{X}\boldsymbol{w}_{0}) - f^{*})}{(t+1)(t+2)} + \left[2LD_{2}^{2}\left(\frac{1}{n}\right) + 8LD_{1}D_{\infty}\left(\frac{n-1}{n}\right)\right]\left(\frac{1}{t}\right) + \frac{(2D_{\infty}H_{0} + 64LD_{1}D_{\infty})n^{2}}{(t+1)(t+2)}$$

$$= O\left(\frac{f(\boldsymbol{X}\boldsymbol{w}_0) - f^*}{t^2}\right) + O\left(\frac{LD_{\infty}^2(1 + \text{Ratio})}{t}\right) + O\left(\left(D_{\infty}H_0 + LD_{\infty}^2\text{Ratio}\right)\left(\frac{n^2}{t^2}\right)\right)$$

 $\leq O\left(\frac{LD_{\infty}^{2}\operatorname{Ratio}}{t}\right) \leq O\left(\frac{n}{t}\right)$

$$\ell_p$$
 norm "diameter" of C is $D_p := \max_{\boldsymbol{w}, \boldsymbol{v} \in C} \|\boldsymbol{X}(\boldsymbol{w} - \boldsymbol{v})\|_p$

Define Ratio := D_1/D_∞ and note that Ratio $\leq n$

The expected optimality gap bound is:

$$\frac{2(f(\boldsymbol{X} \boldsymbol{w}_{0}) - f^{*})}{(t+1)(t+2)} + \left[2LD_{2}^{2}\left(\frac{1}{n}\right) + 8LD_{1}D_{\infty}\left(\frac{n-1}{n}\right)\right]\left(\frac{1}{t}\right) + \frac{(2D_{\infty}H_{0} + 64LD_{1}D_{\infty})n^{2}}{(t+1)(t+2)}$$

$$= O\left(\frac{f(\boldsymbol{X}\boldsymbol{w}_0) - f^*}{t^2}\right) + O\left(\frac{LD_{\infty}^2(1 + \text{Ratio})}{t}\right) + O\left(\left(D_{\infty}H_0 + LD_{\infty}^2\text{Ratio}\right)\left(\frac{n^2}{t^2}\right)\right)$$

 $\leq O\left(\frac{LD_{\infty}^2 \operatorname{Ratio}}{t}\right) \leq O\left(\frac{n}{t}\right)$

• A practical, fast version of Stochastic Frank-Wolfe

- A practical, fast version of Stochastic Frank-Wolfe
- Hyperparameter-free

- A practical, fast version of Stochastic Frank-Wolfe
- Hyperparameter-free
- Implementation available in https://github.com/openopt/copt

- A practical, fast version of Stochastic Frank-Wolfe
- Hyperparameter-free
- Implementation available in https://github.com/openopt/copt
- Use FW when the structure of your problem demands it!

Thanks for your attention

References

Kerdreux, Thomas, Fabian Pedregosa, and Alexandre d'Aspremont (2018). "Frank-Wolfe with Subsampling Oracle". In: Proceedings of the 35th International Conference on Machine Learning.

- Lu, Haihao and Robert Michael Freund (2020). "Generalized stochastic FrankWolfe algorithm with stochastic substitute gradient for structured convex optimization". In: Math. Program.
 - Mokhtari, Aryan, Hamed Hassani, and Amin Karbasi (2018). "Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization". In: *ArXiv* abs/1804.09554.
- Niculae, Vlad et al. (2018). "SparseMAP: Differentiable Sparse Structured Inference". In: International Conference on Machine Learning.
- Ping, Wei, Qiang Liu, and Alexander T Ihler (2016). "Learning Infinite RBMs with Frank-Wolfe". In: Advances in Neural Information Processing Systems.