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Setup



Second-Price (SP) Auction with Reserve Prices

▌ Setting
› A good (e.g., an ad space)  is offered for sale by a seller to 𝑀 buyers
› Each buyer 𝑚 holds a private valuation 𝑣$ ∈ [0,1] for this good

(𝑣$ is unknown to the seller)

▌ Actions
› The seller selects a reserve price 𝑝$ for each buyer 𝑚
› Each buyer 𝑚	submits a bid 𝑏$

▌ Allocation and payments
› Determine actual buyer-participants: 𝕄 = {𝑚 ∣ 𝑏$ ≥ 𝑝$}
› The good is received by the buyer 𝑚4 = argmax$∈𝕄𝑏$ (that has the highest bid)
› This buyer pays 𝑝$4 = max	{𝑝$4 ,max$∈𝕄∖{$4}𝑏$}



Repeated Second-Price Auctions with Reserve

Equal goods (e.g., ad spaces)  are repeatedly offered for sale

› by a seller (e.g., RTB platform) to 𝑀 buyers (e.g., advertisers) 
› over 𝑇 rounds (one good per round). 

Each buyer 𝑚

› holds a private fixed valuation 𝑣$ ∈ [0,1] for each of those goods, 
› 𝑣$ is unknown to the seller.

At each round 𝑡 = 1,… , 𝑇, the seller conducts SP auction with reserves:

› the seller selects a reserve price 𝑝>$ for each buyer 𝑚
› and a bid 𝑏>$ is submitted by each buyer 𝑚.



Seller’s pricing algorithm

› The seller applies a pricing algorithm 𝐴	that sets reserve prices {𝑝>$}>@A,$@A
B,C

in response to bids 𝐛 = {𝑏>$}>@A,$@A
B,C of buyers 𝑚 = 1,… ,𝑀

› A price 𝑝>$ can depend only on past bids {𝑏EF}E@A,F@A
>GA,C and the horizon 𝑇.



Strategic buyers

▌ The seller announces her pricing algorithm 𝐴 in advance

In each round 𝑡, each buyer 𝑚

› observes a history of previous rounds (available to this buyer) and

› chooses his bid 𝑏>$ s.t. it maximizes his future 𝛾$-discounted surplus:

Sur> 𝐴, 𝑣$, 𝛾$, {𝑏E$} := 𝔼 M 𝛾$EGA𝕀 $@$4O 	(𝑣
$ − 𝑝E$)

B

E@>
, 𝛾$ ∈ 0,1 ,

where

𝕀 $@$4O is the indicator of the event when buyer 𝑚 is the winner in round 𝑠

𝑝E$ is the payment of the buyer 𝑚 in this case



Seller’s goal

The seller’s strategic regret:

SReg 𝑇, 𝐴, 𝑣$ $, 𝛾$ $ := ∑ 	(max
$

𝑣$ − 𝕀 𝕄WX∅ 𝑝>
$4W)B

>@A

She seeks for a no-regret pricing for worst-case valuation:

sup\],…,\^∈ _,A SReg 𝑇, 𝐴, 𝑣$ $, 𝛾$ $ = 𝑜 𝑇

Optimality: the lowest possible upper bound for the regret of the form 𝑂 𝑓(𝑇) .



Background,
Research question & 
Main contribution



Background: 1-buyer case (posted-price auctions)

[Kleinberg et al., FOCS’2003] Optimal algorithm against myopic buyer with 
truthful regret Θ(log log 𝑇).

[Drutsa, WWW’2017] Optimal algorithm against strategic buyer with 
regret Θ(log log 𝑇) for 𝛾 < 1.

[Amin et al., NIPS’2013] The strategic setting is introduced.
∄ no-regret pricing for non-discount case 𝛾 = 1.

If one buyer (𝑀 = 1), a SP auction reduces to a posted-price auction:

› the buyer either accepts or rejects a currently offered price 𝑝>A

› the seller either gets payment equal to 𝑝>A or nothing



Research question

The known optimal algorithms (PRRFES & prePRRFES) from posted-price auctions
cannot be directly applied to set reserve prices in second-price auctions

› buyers in SP auctions have incomplete information due to presence of rivals
› the proofs of optimality of [pre]PRRFES strongly rely on complete information

▌ In this study, I try to find an optimal algorithm for the multi-buyer setup 



A novel algorithm for our strategic buyers 
with regret upper bound of Θ(log log 𝑇) for 𝛾 < 1

Main contribution

A novel transformation that maps any pricing algorithm
designed for posted-price auctions to a multi-buyer setup



Main ideas



Two learning processes

SReg 𝑇, 𝐴, 𝑣$ $, 𝛾$ $ := ∑ 	(max
$

𝑣$ − 𝕀 𝕄WX∅ 𝑝>
$4W)B

>@A

Find the buyers’ valuations 

Learning process #1

Find which buyer has 
the maximal valuation

Learning process #2



Learning proc.#1: an idea to localize a valuation

PRRFES is an optimal learner of a valuation in posted-price auctions.

However, its core localization technique relies on:

▌ The buyer completely knows the outcomes of current and all future rounds
▌ given their bids (due to absence of rivals)

Can we use PRRFES in the second-price scenario where 
each buyer does not know perfectly the outcomes of rounds?



Barrage pricing

› Reserve prices are personal (individual) in our setup

› Thus, we are able  to “eliminate” particular buyers from particular rounds

› Namely, a buyer 𝑚will not bid above 1/(1 − 𝛾$)

› We call this price as “barrage” one and denote it by ∞

Let “eliminate” all buyers except some buyer 𝑚 in a round 𝑡
Then the buyer 𝑚will have complete information about outcome of this round 𝑡



Learning proc.#2: an idea to find max valuation

The search algorithm works by maintaining a feasible interval [𝑢$,𝑤$] that

› is aimed to localize the valuation 𝑣$, i.e. 𝑣$ ∈ [𝑢$,𝑤$]

› shrinks as 𝑡 → ∞

▌ If, in a round 𝑡, it becomes that 𝑤$ < 𝑢m for some buyers 𝑚 and	𝑛,
▌ then buyer 𝑚 has non-maximal valuation which should not be searched anymore

𝑣o 𝑣p𝑣A	0 	1

round 𝑡A

round 𝑡p

round 𝑡o

[𝑢A, 𝑤A] [𝑢p, 𝑤p] [𝑢o, 𝑤o]



Dividing algorithms



Key instrument that implements the ideas

transformation

div



Transformation div: cyclic elimination 
Let 𝐴 be an algorithm designed for repeated posted-price auctions

▌ Its transformation 𝐝𝐢𝐯 𝐴 is an algorithm for repeated SP auctions as follows

	𝑝AA Algorithm 𝐴∞ ∞ 	𝑝tA ∞ ∞ 	𝑝uA ∞

Buyers: Reserve Prices (only one non-barrage in a round): Reserve prices are set by:

. . .

∞ 	𝑝pp ∞ ∞ 	𝑝vp ∞ ∞ 	𝑝wp . . .

∞ ∞ 	𝑝oo ∞ ∞ 	𝑝xo ∞ ∞ . . .

Algorithm 𝐴

Algorithm 𝐴

Rounds, 𝑡 =

Periods, 𝑖 =

1 2 3 4 5 6 7 8

1 2 3



Transformation div: stopping rule
We stop considering a buyer 𝑚	in periods when 𝑤$ < 𝑢m for some buyer	𝑛.

▌ The number of periods with buyer 𝑚 is referred to as  subhorizon, 𝐼$.

	𝑝EA Algorithm 𝐴∞ ∞ ∞ ∞ ∞ ∞ ∞

Buyers: Reserve Prices: Reserve prices are set by:

. . .

∞ 	𝑝E|Ap ∞ ∞	𝑝E|op ∞	𝑝E|vp . . .

∞ ∞ 	𝑝E|po ∞ ∞	𝑝E|to ∞ . . .

Algorithm 𝐴

Algorithm 𝐴

Rounds, 𝑡 =

Periods, 𝑖 =

𝑠 𝑠 + 1 𝑠 + 2 𝑠 + 3 𝑠 + 4 𝑠 + 5 𝑠 + 6 𝑠 + 7

𝑘 𝑘 + 1 𝑘 + 2

	𝑝E|up

	𝑝E|xo

𝑘 + 3

We stopped learning of 𝑣A and 𝐼A = 𝑘, when 𝑤A < 𝑢p



Transformation div: regret decomposition 

Lemma 1. For the described transformation, strategic regret has decomposition:

SReg 𝑇, 𝐝𝐢𝐯 𝐴 , 𝑣$ $, 𝛾$ $ =

=M 	Reg$(𝑇, 𝐴, 𝑣$, 𝛾$)
�

$
+	M 	𝐼$(max

m
𝑣m − 𝑣$)

�

$

Deviation regret

Measures how fast we stop learning 
of non-maximal valuations

Individual regrets

Measure how the algorithm 𝐴 learns 
the valuation of each buyer



Key challenge against strategic buyer

Strategic buyer may lie and mislead algorithms, thus a good algorithm must
Extract correct information about a buyer’s valuation from his actions (bids)

▌ Dividing structure in a round allows to construct a tool to locate valuations:
▌ it is enough to make complete information situation in a round



Upper bound on valuation of strategic buyer
Let buyer 𝑚	is the non-”eliminated ” one in a round 𝑡.

▌ If the buyer accepts (bids above) the current reserve price 𝑝>$

Surplus> = 𝔼 𝛾$>GA𝕀 $@$4W 	(𝑣
$ − 𝑝>$) + 𝔼 M 𝛾$EGA𝕀 $@$4O 	(𝑣

$ − 𝑝E$)
B

E@>|A

▌ If the buyer rejects (bids below) the current reserve price 𝑝>$

Surplus> = 𝔼 M 𝛾$EGA𝕀 $@$4O 	(𝑣
$ − 𝑝E$)

B

E@>|�
≤
𝛾$>|�GA

1 − 𝛾$
(𝑣$ − [lowest_price])

If we observe that a buyer rejects non-”barrage” reserve price, then:

𝑣$ − 𝑝>$ <	 ���

AG��G���
(𝑝>$ − [lowest_price])

𝛾$>GA𝕀 �W���W� 	(𝑣$ − 𝑝>$)=𝛾$>GA	(𝑣$ − 𝑝>$)

= ≤

0



Optimal algorithm



Pricing algorithm divPRRFES

Apply the transformation div

to PRRFES algorithm



divPRRFES: individual and deviation regrets

▌ Individual regrets

Our tool to locate valuations provides the upper bound (as in 1-buyer case):

Reg$ 𝑇, 𝐴, 𝑣$, 𝛾$ = 𝑂 logp logp 𝑇 	∀𝑚

▌ Deviation regrets

› For each buyer 𝑚with non-maximal valuation (i.e., 𝑣$ < max
m
𝑣m) 

› We can upper bound its subhorizon 𝐼$:

𝐼$ ≤
𝐶

max
m
𝑣m − 𝑣$



divPRRFES is optimal
Theorem.
Let 𝛾_ ∈ (0,1)
Then for the pricing algorithm divPRRFES 𝐴with:

› the number of penalization rounds 𝑟 ≥ log��
AG��
p

and

› the exploitation rate 𝑔 𝑙 = 2p�, 𝑙 ∈ ℤ|,

for any valuations 𝑣A, … , 𝑣C ∈ 0,1 , any discounts 𝛾A, … , 𝛾C ∈ 0, 𝛾_ ,  and 𝑇 ≥ 2, 
the strategic regret is upper bounded:

SReg 𝑇, 𝐴, 𝑣$ $, 𝛾$ $ ≤ 𝐶 logp logp 𝑇 + 2 + 𝐵,

𝐶 ≔ 𝑀 𝑟max
$

𝑣$ + 4 , 𝐵 ≔ (24 + 5𝑟)(𝑀 − 1).



Summary 



A novel algorithm for setting reserve prices in 
second-price auctions with strategic buyers. 

Its worst-case regret is optimal: Θ(log log 𝑇) for 𝛾 < 1

Main contribution: reminding

A novel transformation that maps any pricing algorithm
designed for posted-price auction to a multi-buyer setups
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