

Vandex

Vandex

Reserve Pricing in Repeated Second-Strategic Bidders

Alexey Drutsa

Repeated Second-Price Auctions with

Setup

Second-Price (SP) Auction with Reserve Prices

Setting

- > A good (e.g., an ad space) is offered for sale by a seller to M buyers > Each buyer m holds a private valuation $v^m \in [0,1]$ for this good
- $(v^m$ is unknown to the seller)

Actions

-) The seller selects a reserve price p^m for each buyer m
- > Each buyer m submits a bid b^m

Allocation and payments

- > Determine actual buyer-participa
- > The good is received by the buyer
- > This buyer pays $\overline{p^{\overline{m}}} = \max \{p^{\overline{m}}, max\}$

$$\begin{aligned} \text{nts: } \mathbb{M} &= \{m \mid b^m \geq p^m\} \\ \forall \, \overline{m} &= \mathrm{argmax}_{m \in \mathbb{M}} b^m \text{ (that has the highest b} \\ \mathrm{ax}_{m \in \mathbb{M} \setminus \{\overline{m}\}} b^m \end{aligned}$$

Repeated Second-Price Auctions with Reserve

Equal goods (e.g., ad spaces) are repeatedly offered for sale

- \rightarrow by a seller (e.g., RTB platform) to M buyers (e.g., advertisers) \rightarrow over T rounds (one good per round).

Each buyer *m*

- > holds a private fixed valuation $v^m \in [0,1]$ for each of those goods,
- $\rightarrow v^m$ is unknown to the seller.

At each round t = 1, ..., T, the seller conducts SP auction with reserves:

- > the seller selects a reserve price p_t^m for each buyer m > and a bid b_t^m is submitted by each buyer m.

Seller's pricing algorithm

- in response to bids $\mathbf{b} = \{b_t^m\}_{t=1,m=1}^{T,M}$ of buyers m = 1, ..., M

> The seller applies a pricing algorithm A that sets reserve prices $\{p_t^m\}_{t=1,m=1}^{T,M}$

> A price p_t^m can depend only on past bids $\{b_s^k\}_{s=1,k=1}^{t-1,M}$ and the horizon T.

Strategic buyers

The seller announces her pricing algorithm A in advance In each round t, each buyer m

- observes a history of previous rounds (available to this buyer) and chooses his bid b_t^m s.t. it maximizes his future γ_m -discounted surplus: $\operatorname{Sur}_{t}(A, v^{m}, \gamma_{m}, \{b_{s}^{m}\}) := \mathbb{E}\left[\sum_{s=t}^{T} \gamma_{m}^{s-1} \mathbb{I}_{\{m=\overline{m}_{s}\}} \left(v^{m} - \overline{p_{s}^{m}}\right)\right], \qquad \gamma_{m} \in (0, 1],$
- >

where

 p_s^m is the payment of the buyer m in this case

 $\mathbb{I}_{\{m=\overline{m}_s\}}$ is the indicator of the event when buyer m is the winner in round s

Seller's goal

The seller's strategic regret:

SReg $(T, A, \{v^m\}_m, \{\gamma_m\}_m)$:

She seeks for a no-regret pricing for worst-case valuation:

 $\sup_{v^1,...,v^M \in [0,1]} SReg(T, A, \{v^m\}_m, \{\gamma_m\}_m) = o(T)$

Optimality: the lowest possible upper bound for the regret of the form O(f(T)).

$$= \sum_{t=1}^{T} \left(\max_{m} v^{m} - \mathbb{I}_{\{\mathbb{M}_{t} \neq \emptyset\}} \overline{p_{t}^{\overline{m}_{t}}} \right)$$

Background, Research question & Main contribution

Background: 1-buyer case (posted-price auctions)

If one buyer (M = 1), a SP auction reduces to a posted-price auction:

- the buyer either accepts or rejects a currently offered price p_{r}^{1}
- the seller either gets payment equal to p_t^1 or nothing

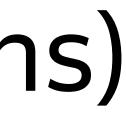
[Kleinberg et al., FOCS'2003]

[Amin et al., NIPS'2013]

[Drutsa, WWW'2017]

- The strategic setting is introduced. \nexists no-regret pricing for non-discount case $\gamma = 1$.
- Optimal algorithm against strategic buyer with regret $\Theta(\log \log T)$ for $\gamma < 1$.

Optimal algorithm against **myopic** buyer with truthful regret $\Theta(\log \log T)$.



Research question

The known optimal algorithms (PRRFES & prePRRFES) from posted-price auctions cannot be directly applied to set reserve prices in second-price auctions

> buyers in SP auctions have **incomplete information** due to presence of rivals > the proofs of optimality of [pre]PRRFES strongly rely on complete information

In this study, I try to find an optimal algorithm for the multi-buyer setup

Main contribution

A novel transformation that maps any pricing algorithm designed for posted-price auctions to a multi-buyer setup

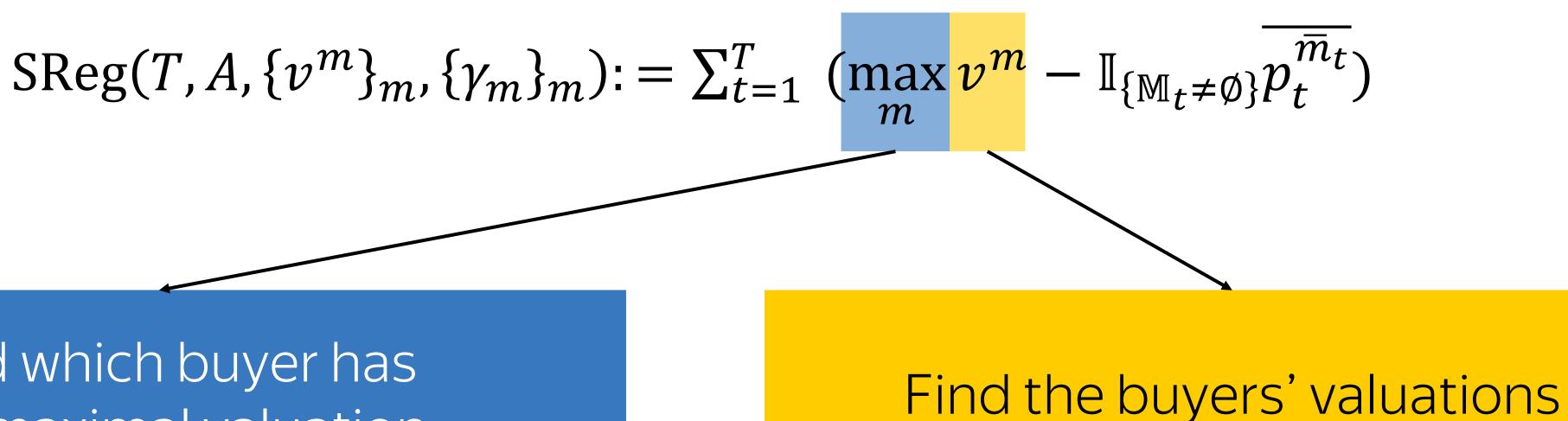
A novel algorithm for our strategic buyers with regret upper bound of $\Theta(\log \log T)$ for $\gamma < 1$

Main ideas

Two learning processes

Find which buyer has the maximal valuation

Learning process #2



Learning process #1

Learning proc.#1: an idea to localize a valuation

PRRFES is an optimal learner of a valuation in posted-price auctions.

However, its core localization technique relies on:

given their bids (due to absence of rivals)

- The buyer completely knows the outcomes of current and all future rounds

Can we use PRRFES in the second-price scenario where each buyer does not know perfectly the outcomes of rounds?

Barrage pricing

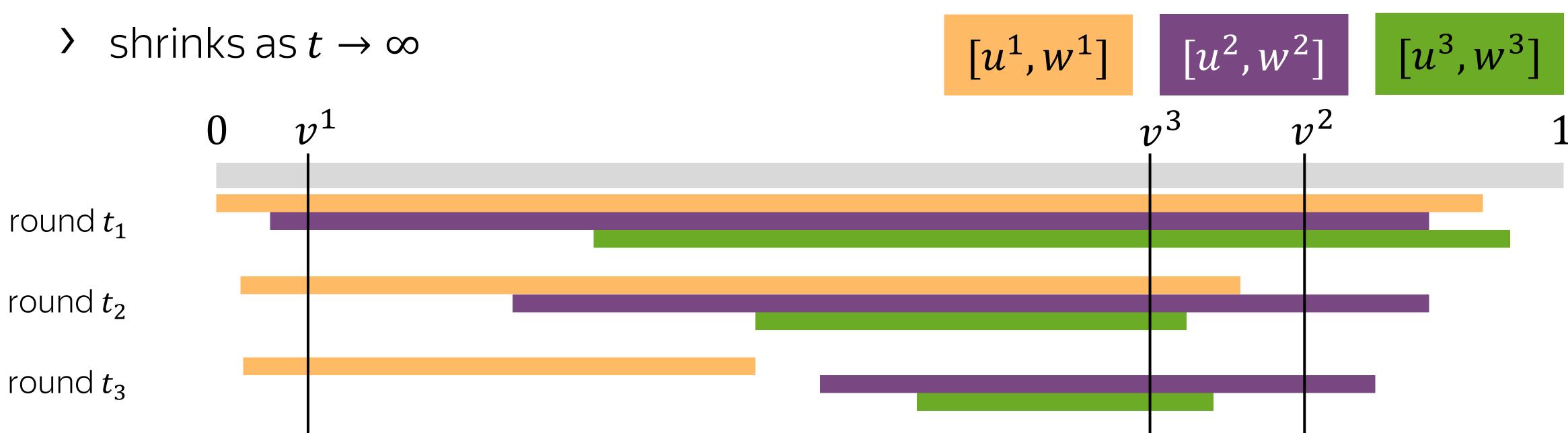
- > Reserve prices are personal (individual) in our setup
- > Thus, we are able to "eliminate" particular buyers from particular rounds
- > Namely, a buyer m will not bid above $1/(1 \gamma_m)$
- > We call this price as "barrage" one and denote it by ∞

Let "eliminate" all buyers except some buyer *m* in a round *t* Then the buyer *m* will have **complete information about outcome of this round** *t*

Learning proc.#2: an idea to find max valuation

The search algorithm works by maintaining a feasible interval $[u^m, w^m]$ that

-) is aimed to localize the valuation v^m , i.e. $v^m \in [u^m, w^m]$
- shrinks as $t \rightarrow \infty$



If, in a round t, it becomes that $w^m < u^n$ for some buyers m and n,

- then buyer *m* has non-maximal valuation which should not be searched anymore

Dividing algorithms

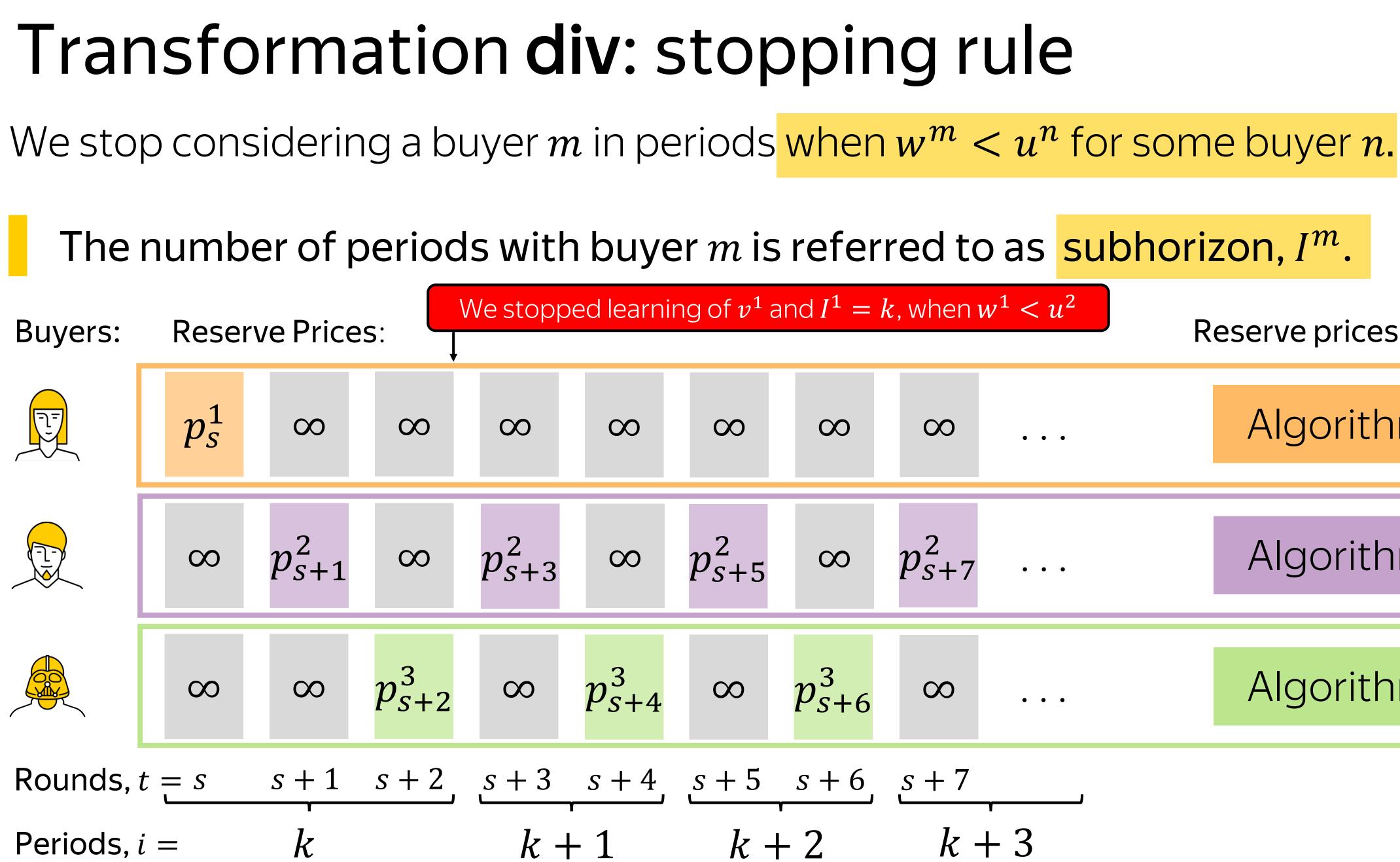
Key instrument that implements the ideas

transformation

Transformation div: cyclic elimination Let A be an algorithm designed for repeated posted-price auctions Its transformation div(A) is an algorithm for repeated SP auctions as follows **Reserve Prices** (only one non-barrage in a round): Buyers: P p_{1}^{1} p_{4}^{1} ∞ ∞ ∞ p_{2}^{2} p_{5}^{2} ∞ ∞ ∞ p_{3}^{3} ∞ ∞ ∞ ∞ Rounds, t = 13 4 5 Periods, i =

Reserve prices are set by:

∞	p_7^1	0	• • •	Algorithm A
∞	∞	p_{8}^{2}	• • •	Algorithm A
p_{6}^{3}	∞	∞	• • •	Algorithm A
6		8 3		



We stopped learning of v^1 and $I^1 = k$, when $w^1 < u^2$

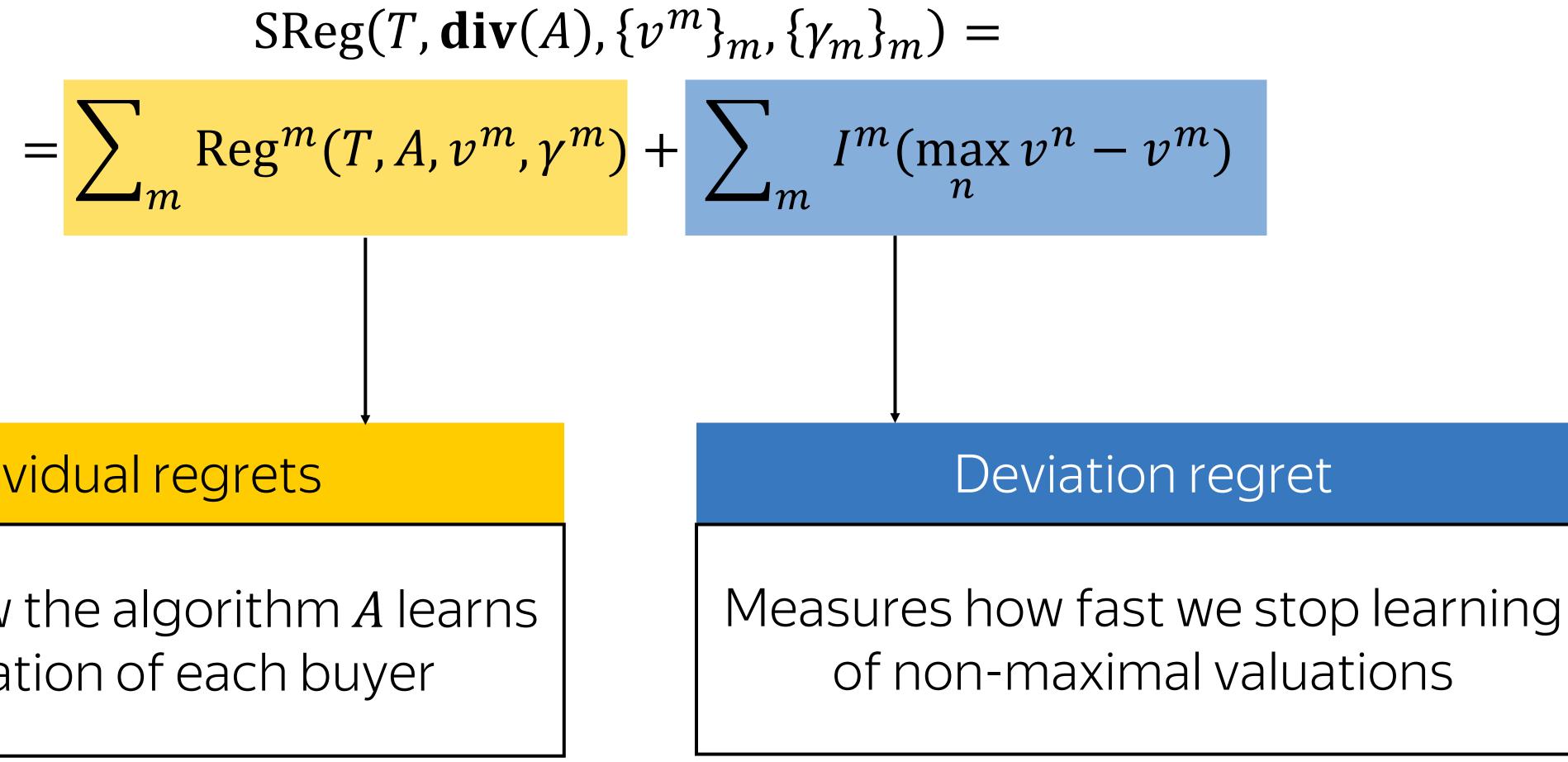
Reserve prices are set by:

∞	∞	∞	• • •	Algorithm A
2 s+5	∞	p_{s+7}^2	• • •	Algorithm A
∞	p_{s+6}^{3}	∞	• • •	Algorithm A

$$\frac{+5 + 6}{k + 2}, \frac{s + 7}{k + 3}$$

Transformation div: regret decomposition

Lemma 1. For the described transformation, strategic regret has decomposition:



Individual regrets

Measure how the algorithm *A* learns the valuation of each buyer

Key challenge against strategic buyer

Strategic buyer may lie and mislead algorithms, thus a good algorithm must Extract correct information about a buyer's valuation from his actions (bids)

Dividing structure in a round allows to construct a tool to locate valuations: it is enough to make complete information situation in a round

Upper bound on valuation of strategic buyer

Let buyer *m* is the non-"eliminated " one in a round *t*.

If we observe that a buyer rejects non-"barrage" reserve price, then: $v^m - p_t^m < \frac{\gamma_m^r}{1 - \gamma_m - \gamma_m^r} (p_t^m - [\text{lowest_price}])$

Optimal algorithm

Pricing algorithm divPRRFES

Apply the transformation div to PRRFES algorithm

divPRRFES: individual and deviation regrets

Individual regrets

Deviation regrets

- For each buyer m with non-maximal valuation (i.e., $v_m < \max v^n$) We can upper bound its subhorizon I^m : I^m <

Our tool to locate valuations provides the upper bound (as in 1-buyer case): $\operatorname{Reg}^{m}(T, A, v^{m}, \gamma^{m}) = O(\log_{2} \log_{2} T) \forall m$

 $\max_n v^n - v_m$

divPRRFES is optimal

Theorem. Let $\gamma_0 \in (0,1)$

- Then for the pricing algorithm divPRRFES A with: > the number of penalization rounds $r \ge \left|\log_{\gamma_0} \frac{1-\gamma_0}{2}\right|$ and > the exploitation rate $g(l) = 2^{2^l}, l \in \mathbb{Z}_+$,

for any valuations $v^1, \dots, v^M \in [0,1]$, any discounts $\gamma_1, \dots, \gamma_M \in [0,\gamma_0]$, and $T \ge 2$, the strategic regret is upper bounded:

 $\operatorname{SReg}(T, A, \{v^m\}_m, \{\gamma_m\}_r)$

$$C \coloneqq M\left(r\max_{m} v^{m} + 4\right)$$

$$_{m}) \leq C(\log_{2}\log_{2}T+2)+B,$$

$$B \coloneqq (24+5r)(M-1).$$

Summary

Main contribution: reminding

A novel algorithm for setting reserve prices in second-price auctions with strategic buyers. Its worst-case regret is optimal: $\Theta(\log \log T)$ for $\gamma < 1$

A novel transformation that maps any pricing algorithm designed for posted-price auction to a multi-buyer setups

Thank you!

Alexey Drutsa Yandex

