

1

Towards Accurate Post-training Network Quantization via Bit-split and Stitching

Peisong Wang, Qiang Chen, Xiangyu He, Jian Cheng

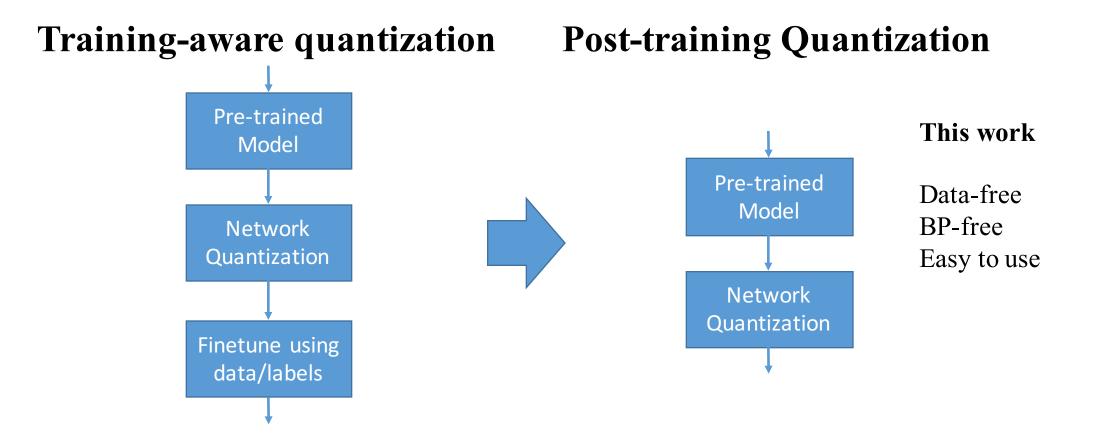
Institute of Automation, Chinese Academy of Sciences

Outline

- Background
- Motivation
- Approach
- Experiments

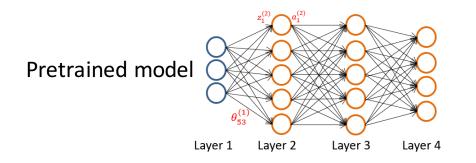
Background

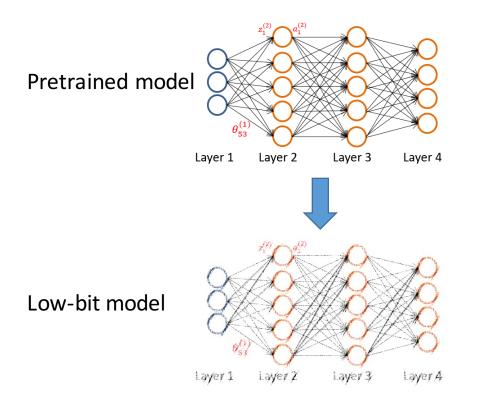
• Low-bit quantization has emerged as a promising compression technique


- Robustness to network architectures
- Hardware friendly

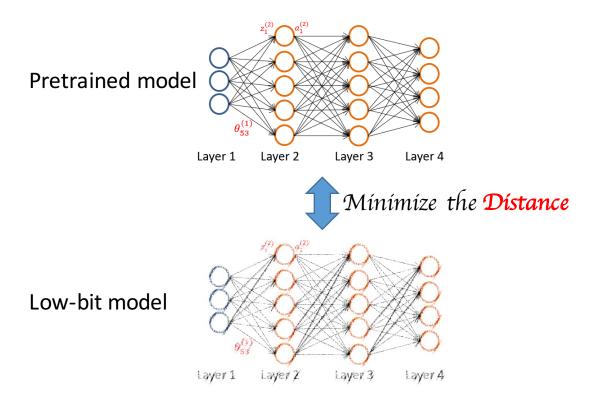
• Problems: low-bit quantization relies on

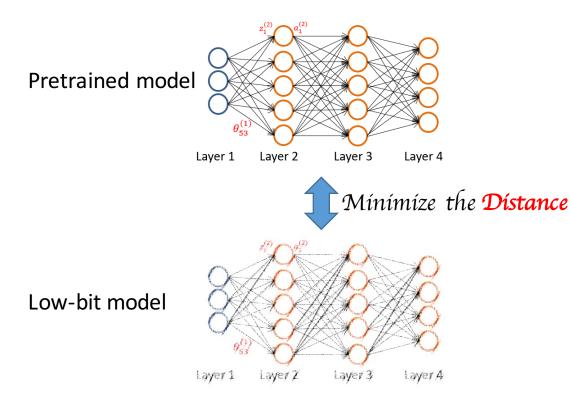
- Training data
- Large computational resources (CPUs, GPUs)
- Quantization skills and expertise

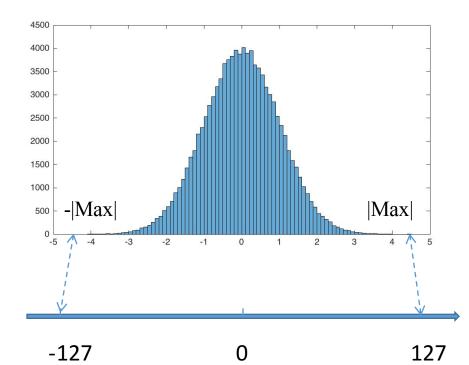

Background

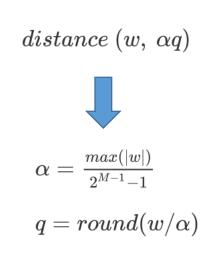


Krishnamoorthi, Raghuraman. "Quantizing deep convolutional networks for efficient inference: A whitepaper." arXiv preprint arXiv:1806.08342 (2018).





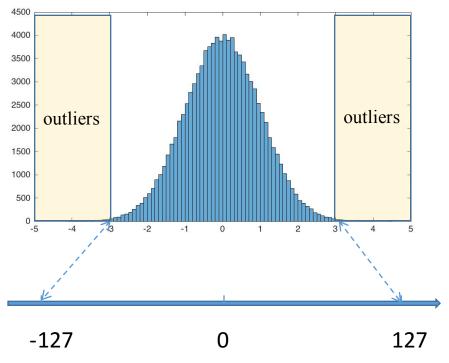

- I. Define the distance
- II. Minimize the distance



Related works

- I. Define the distance
- II. Minimize the distance

TF-lite Map the *maximum weighs (activations)* to the maximum low-bit number



Krishnamoorthi, Raghuraman. "Quantizing deep convolutional networks for efficient inference: A whitepaper." arXiv preprint arXiv:1806.08342 (2018).

Related works

- I. Define the distance
- II. Minimize the distance

Szymon Migacz. 8-bit Inference with TensorRT. GTC 2017

TensorRT Map the *clip value* to the maximum low-bit number

distance $(clip(w), \alpha q)$

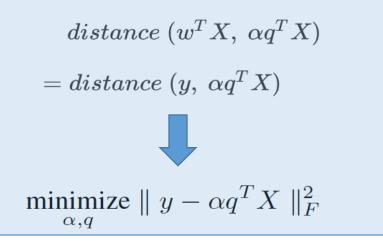
 $lpha = rac{ClipValue}{2^{M-1}-1}$

q = round(clip(w)/lpha)

Method

I. **Define the distance** Minimize the distance II. Pretrained model Layer 1 Layer 2 Layer 4 Layer 3 Minimize the **Distance** Low-bit model Layer 2 Layer 3 Layer A Layer 1

Objective


minimize:	$f(x; \{w_l\}_{l=1}^L)$	$\leftrightarrow \ f(x; \{q_l\}_{l=1}^L)$
-----------	-------------------------	---

Previous work

minimize: $w_l \leftrightarrow q_l$

This work

Learns *a low-bit mapping* from input to the output of every convolution.

Method

I. Define the distance

 $\underset{\alpha,q}{\text{minimize}} \parallel y - \alpha q^T X \parallel_F^2$

II. Minimize the distance (Bit-split)

$$\min_{\alpha, \{q_1, \cdots, q_{M-1}\}} \| y - \alpha (2^0 q_1^T + \dots + 2^{M-2} q_{M-1}^T) X \|_F^2,$$

s.t. $q_m \in \{-1, 0, +1\}^{(C \cdot K_h \cdot K_w)}$ for $m = 1, \dots, M-1$

 2^{M-2} 2^1 2^0 $q_M q_{M-1}$... $q_2 q_1$

Method

Optimize α

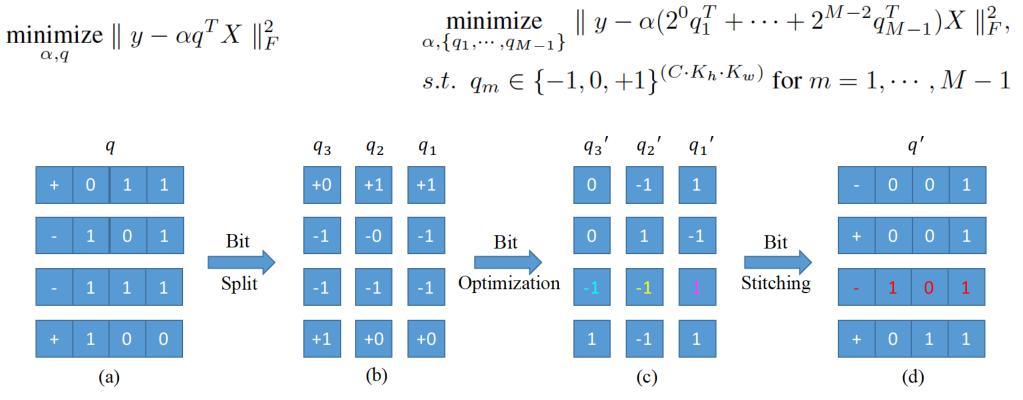
Optimize m-th bit

$$\min_{\substack{\alpha, \{q_1, \cdots, q_{M-1}\}}} \| y - \alpha (2^0 q_1^T + \dots + 2^{M-2} q_{M-1}^T) X \|_F^2,$$

s.t. $q_m \in \{-1, 0, +1\}^{(C \cdot K_h \cdot K_w)}$ for $m = 1, \dots, M-1$

$$\begin{array}{l} \underset{q_m}{\text{minimize}} \parallel y_m - \alpha_m q_m^T X \parallel_F^2, \\ s.t. \ q_m \in \{-1, 0, +1\}^{(C \cdot K_h \cdot K_w)} \end{array}$$

$$\begin{cases} y_m = y - \alpha \sum_{i \neq m} 2^{m-1} q_i^T X, \\ \alpha_m = \alpha 2^{m-2} \end{cases}$$


Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y. and Cheng, J., 2018. Two-step quantization for low-bit neural networks. In Proceedings of the IEEE Conference on computer vision and pattern recognition (pp. 4376-4384).

Bit-Split for Post-training Network Quantization

Problem:

Optimization:

Figure 1. An illustration of Bit-Split and Stitching (Bit-split) framework for 4-bit weight quantization. In the first step of bit-split stage, each 4-bit value is split into 3 ternary values, which can be optimized separately in the second bit-optimization stage. The third stage stitching optimized bits back into integers, taking the third value for example, $2^0 \cdot 1 + 2^1 \cdot (-1) + 2^2 \cdot (-1) = -5 = -101b$.

Bit-Split Results

Weight Quantization:

Model		8-	bit	7-	bit	6-	bit	5-	bit	4-	bit	3-	bit
	uei	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
ResNet-18	TF-Lite	69.63	88.96	69.67	89.02	69.06	88.72	66.81	87.39	55.53	79.21	0.85	2.68
(69.76, 89.08)	Bit-split	69.79	89.15	69.84	89.15	69.83	89.12	69.70	88.93	69.11	88.69	66.76	87.45
	Bit-split (A8)	69.82	89.15	69.82	89.05	69.80	89.12	69.64	88.98	69.10	88.69	66.75	87.46
ResNet-50	TF-Lite	76.12	92.88	76.07	92.86	75.87	92.82	75.17	92.50	70.14	89.57	4.22	11.53
(76.15, 92.87)	Bit-split	76.20	92.97	76.16	92.91	76.17	92.90	76.05	92.82	75.58	92.57	73.64	91.61
ResNet-101	TF-Lite	77.32	93.57	77.28	93.51	77.06	93.47	76.25	93.05	72.67	90.87	9.19	20.05
(77.47, 93.56)	Bit-split	77.55	93.59	77.44	93.59	77.51	93.60	77.55	93.59	76.89	93.31	74.98	92.42
VGG-16-BN	TF-Lite	73.36	91.51	73.34	91.48	73.12	91.36	72.37	90.86	66.36	87.26	1.16	4.49
(73.37, 91.50)	Bit-split	73.43	91.61	73.37	91.52	73.22	91.53	73.37	91.50	72.97	91.35	72.11	90.77

Both Weight and Activation Quantization:

Model		8-	bit	7-	bit	6-	bit	5-	bit	4-1	bit	3-	bit
Mode	L	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
ResNet-18	TF-Lite	69.57	89.02	69.46	88.87	67.95	88.02	61.47	83.43	18.84	36.33	0.13	0.61
(69.76, 89.08)	Bit-split	69.74	89.09	69.68	89.07	69.58	88.96	69.28	88.77	67.56	87.76	61.30	83.47
ResNet-50	TF-Lite	76.05	92.93	75.75	92.70	73.83	91.66	65.46	86.34	10.40	22.36	0.11	0.54
(76.15, 92.87)	Bit-split	75.96	92.83	76.09	92.84	75.90	92.75	75.38	92.59	73.71	91.62	66.22	87.18
ResNet-101	TF-Lite	76.78	93.31	74.07	91.79	31.78	55.96	0.82	2.65	0.25	0.98	0.09	0.54
(77.47, 93.56)	Bit-split	77.23	93.55	77.20	93.47	76.93	93.42	76.07	92.95	74.68	92.18	63.96	85.65
VGG-16-BN	TF-Lite	73.31	91.53	72.94	91.25	70.65	89.77	54.45	78.18	3.41	10.17	0.18	0.78
(73.37, 91.50)	Bit-split	73.43	91.54	73.43	91.55	73.34	91.45	72.89	91.22	71.14	90.29	66.11	86.92

Comparison with State-of-the-arts

Tat	Table 4. Comparison results of different post-training quantization approaches. Bold values indicate the best results.									
	Model	Per-layer	Unified-precision	ResNet-18	ResNet-50	ResNet-101	VGG-16-BN			
	Full-precision	-	-	69.76	76.15	77.47	73.37			
A8W4	TF-Lite (Krishnamoorthi, 2018)	\checkmark		55.5	70.1	72.6	66.4			
Aow4	ACIQ (Banner et al., 2019)	×	\checkmark	67.4	74.8	76.3	71.7			
	ACIQ-Mix (Banner et al., 2019)	×	×	68.3	75.3	76.9	72.4			
	Bit-split	\checkmark	\checkmark	69.1	75.6	76.9	73.0			
A4W4	TF-Lite (Krishnamoorthi, 2018)	\checkmark	\checkmark	18.8	10.4	0.3	3.4			
A4 W 4	TensorRT (Migacz, 2017)	\checkmark	\checkmark	31.9	46.2	49.9	-			
	LAPQ (Nahshan et al., 2019)	\checkmark	\checkmark	59.8	70.0	59.2	-			
	ACIQ-Mix (Banner et al., 2019)	×	×	67.0	73.8	75.0	71.8			
	Bit-split	\checkmark	\checkmark	67.6	73.7	74.7	71.1			
	Bit-split-per-channel	×	\checkmark	68.1	74.2	75.3	71.8			

Table 4. Comparison regults of different post training quantization approaches. Bold values indicate the best regults

Results on Detection and Instance segmentation

tion (mask AP) results on COCO minival set.										
Mo	del	AP _{0.5:0.95}	$AP_{0.5}$	$AP_{0.75}$						
RetinaNet	Full-precision	30.7	49.1	32.4						
(Box)	A8W4	30.1	48.2	31.8						
	A6W4	30.2	48.2	31.9						
	A4W4	29.6	47.6	31.0						
Mask R-CNN	Full-precision	33.1	54.3	35.2						
(Box)	A8W4	32.4	53.5	34.4						
	A6W4	32.3	53.3	34.2						
	A4W4	32.0	52.9	34.0						
Mask R-CNN	Full-precision	30.7	51.2	32.4						
(Mask)	A8W4	30.1	50.5	31.6						
	A6W4	30.1	50.4	31.5						
	A4W4	29.6	49.7	31.2						

Table 5. Object detection (bounding box AP) and instance segmentation (mask AP) results on COCO minival set.

Thanks for your attention.

Codes are available at https://github.com/wps712/BitSplit

peisong.wang@nlpr.ia.ac.cn