

Soft Threshold Weight Reparameterization for Learnable Sparsity

<u>Aditya Kusupati</u>

Vivek Ramanujan^{*}, Raghav Somani^{*}, Mitchell Wortsman^{*} Prateek Jain, Sham Kakade and Ali Farhadi

Motivation

- Deep Neural Networks
 - Highly accurate
 - Millions of parameters & Billions of FLOPs
 - Expensive to deploy
- Sparsity
 - Reduces model size & inference cost
 - Maintains accuracy
 - Deployment on CPUs & weak single-core devices

Privacy preserving smart glasses

Motivation

Existing sparsification methods ullet

- Focus on model size vs accuracy very little on inference FLOPs ullet
- Global, uniform or heuristic sparsity budget across layers ullet

	Layer 1	Layer 2	Layer 3	
				Total
# Params	20	100	1000	1120
FLOPs	100K	100K	50K	250K
<u>Sparsity – Method 1</u>				
# Params	20	100	100	220
FLOPs	100K	100K	5K	205K
<u> Sparsity – Method 2</u>				
# Params	10	10	200	220
FLOPs	50K	10K	10K	70K

Motivation

- Non-uniform sparsity budget *Layer-wise*
 - Very hard to search in deep networks
 - Sweet spot Accuracy vs FLOPs vs Sparsity
 - Existing techniques
 - Heuristics *increase FLOPs*
 - Use RL *expensive to train*

"Can we design a robust efficient method to learn non-uniform sparsity budget across layers?"

Overview

• STR – Soft Threshold Reparameterization

- Learns layer-wise non-uniform sparsity budgets
 - Same model size; Better accuracy; Lower inference FLOPs
 - SOTA on ResNet50 & MobileNetV1 for ImageNet-1K
 - Boosts accuracy by up to 10% in ultra-sparse (98-99%) regime
- Extensions to structured, global & per-weight (mask-learning) sparsity

Soft threshold

Existing Methods

- Gradual Magnitude Pruning (GMP)
- Heuristics ERK
- Global Pruning/Sparsity
- STR some gains from sparse-to-sparse

- DSR, SNFS, RigL etc.,
- Heuristics ERK
- Re-allocation using magnitude/gradient

STR - Method

STR - Method

L-layer DNN, $\mathcal{W} = [\mathbf{W}_l]_{l=1}^L$, $\mathbf{s} = [s_l]_{l=1}^L$ and a function g(.)

$$S_g(\mathbf{W}_l, s_l) = \operatorname{sign}(\mathbf{W}_l) \cdot \operatorname{ReLU}(|\mathbf{W}_l| - g(s_l))$$

$$\mathcal{W} \leftarrow \mathcal{S}_g(\mathcal{W}, \mathbf{s})$$

STR - Training

$$\min_{\mathcal{W},\mathbf{s}} \mathcal{L}(\mathcal{S}_g(\mathcal{W},\mathbf{s}),\mathcal{D}) + \lambda \sum_{l=1}^{L} (|\mathbf{W}_l|_2^2 + |s_l|_2^2)$$

- Regular training with reparameterized weights $\mathcal{S}_{g}(\mathcal{W}, \mathbf{s})$
- Same weight-decay parameter (λ) for both (\mathcal{W} , \mathbf{s})
 - Controls the overall sparsity
- Initialize s; $g(s) \approx 0$
 - Finer sparsity and dense training control
- Choice of g(.)
 - Unstructured sparsity: Sigmoid
 - Structured sparsity: Exponential

STR - Training

• STR learns the SOTA hand-crafted heuristic of GMP

Overall sparsity vs Epochs – 90% sparse ResNet50 on ImageNet-1K

• STR learns diverse non-uniform layer-wise sparsities

Layer-wise sparsity – 90% sparse ResNet50 on ImageNet-1K

STR - Experiments

- Unstructured sparsity CNNs
 - *Dataset*: ImageNet-1K
 - *Models*: ResNet50 & MobileNetV1
 - Sparsity range: 80 99%
 - Ultra-sparse regime: 98 99%
- Structured sparsity Low rank in RNNs
 - Datasets: Google-12 (keyword spotting), HAR-2 (activity recognition)
 - *Model*: FastGRNN
- Additional
 - Transfer of learnt budgets to other sparsification techniques
 - STR for global, per-weight sparsity & filter/kernel pruning

Unstructured vs Structured Sparsity

- Unstructured sparsity
 - Typically magnitude based pruning with global or layer-wise thresholds

- Structured sparsity
 - Low-rank & neuron/filter/kernel pruning

STR Unstructured Sparsity: ResNet50

- STR requires 20% lesser FLOPs with same accuracy for 80-95% sparsity
- STR achieves 10% higher accuracy than baselines in 98-99% regime

STR Unstructured Sparsity: MobileNetV1

- STR maintains accuracy for 75% sparsity with 62M lesser FLOPs
- STR has \sim 50% lesser FLOPs for 90% sparsity with same accuracy

STR Sparsity Budget: ResNet50

- STR learns sparser initial layers than the non-uniform sparsity baselines
- STR makes last layers
 denser than all baselines
- STR produces sparser backbones for transfer learning
- STR adjusts the FLOPs across layers such that it has lower total inference cost than the baselines

STR Sparsity Budget: MobileNetV1

- STR automatically keeps depth-wise separable conv layers denser than rest of the layers
- STR's budget results in
 50% lesser FLOPs than
 GMP

STRConv

Algorithm 1 PyTorch code for STRConv with per-layer threshold.

```
import torch
import torch.nn as nn
import torch.nn.functional as F
from args import args as parser_args
def softThreshold(x, s, g=torch.sigmoid):
   return torch.sign(x) *torch.relu(torch.abs(x)-g(s))
class STRConv(nn.Conv2d): # Overloaded Conv2d which can replace nn.Conv2d
  def __init__(self, *args, **kwargs):
      super().__init__(*args, **kwargs)
      # "q" can be chosen appropriately, but torch.sigmoid works fine.
      self.g = torch.sigmoid
      # parser_args gets arguments from command line. sInitValue is the initialization of "s" for all layers. It
           can take in different values per-layer as well.
      self.s = nn.Parameter(parser_args.sInitValue*torch.ones([1, 1]))
      # "s" can be per-layer (a scalar), global (a shared scalar across layers), per-channel/filter (a vector)
          or per individual weight (a tensor of the size self.weight). All the experiments use per-layer "s" (a
          scalar) in the paper.
  def forward(self, x):
     self.sparseWeight = softThreshold(self.weight, self.s, self.g)
      # Parameters except "x" and "self.sparseWeight" can be chosen appropriately. All the experiments use
          default PyTorch arguments.
     x = F.conv2d(x, self.sparseWeight, self.bias, self.stride, self.padding, self.dilation, self.groups)
      return x
```

FC layer is implemented as a 1×1 Conv2d and STRConv is used for FC layer as well.

STR Structured Sparsity: Low rank

 W_1

 W_2

STR – Critical Design Choices

- Weight-decay λ
 - Controls overall sparsity
 - Larger $\lambda \rightarrow$ higher sparsity at the cost of some instability
- Initialization of s_l
 - Controls finer sparsity exploration
 - Controls duration of dense training
- Careful choice of g(.)
 - Drives the training dynamics
 - Better functions which consistently revive dead weights

STR - Conclusions

- STR enables stable end-to-end training (with no additional cost) to obtain sparse & accurate DNNs
- STR efficiently learns per-layer sparsity budgets
 - Reduces FLOPs by up to 50% for 80-95% sparsity
 - Up to 10% more accurate than baselines for 98-99% sparsity
 - Transferable to other sparsification techniques
- Future work
 - Formulation to explicitly minimize FLOPs
 - Stronger guarantees in standard sparse regression setting
- Code, pretrained models and sparsity budgets available at

https://github.com/RAIVNLab/STR

Vivek*

Raghav*

Mitchell*

Thank You

Prateek

Sham

Ali

