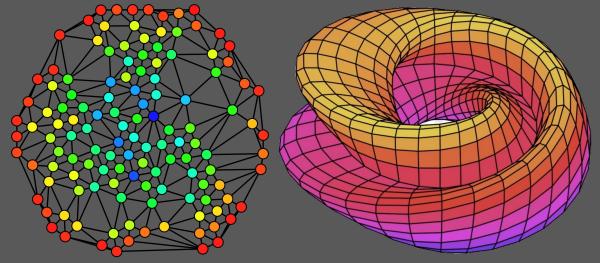
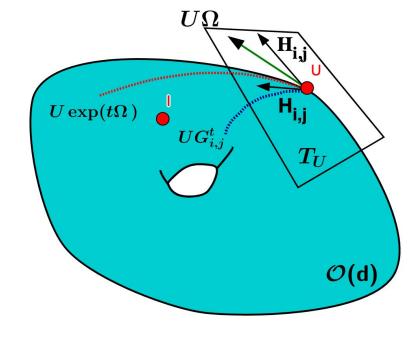
Stochastic Flows and Geometric Optimization on the Orthogonal Group

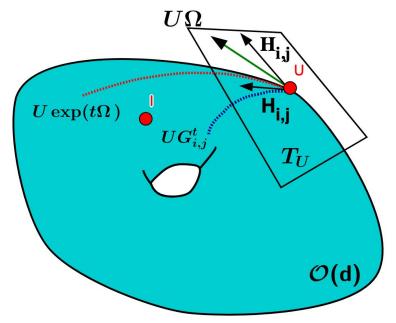


Krzysztof Choromanski, David Cheikhi, Jared Davis, Valerii Likhosherstov, Achille Nazaret, Achraf Bahamou, Xingyou Song, Mrugank Akarte, Jack Parker-Holder, Jacob Bergquist, Yuan Gao, Aldo Pacchiano, Tamas Sarlos, Adrian Weller, Vikas Sindhwani

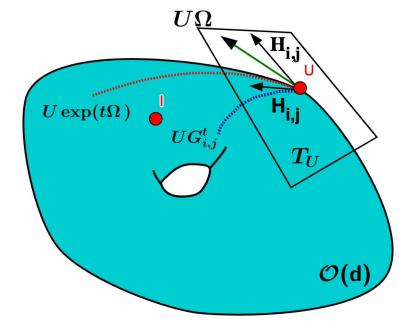
[https://arxiv.org/abs/2003.13563]

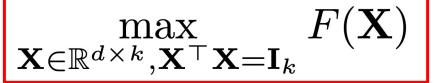


$$\max_{\mathbf{X} \in \mathbb{R}^{d \times k}, \mathbf{X}^{\top} \mathbf{X} = \mathbf{I}_k} F(\mathbf{X})$$

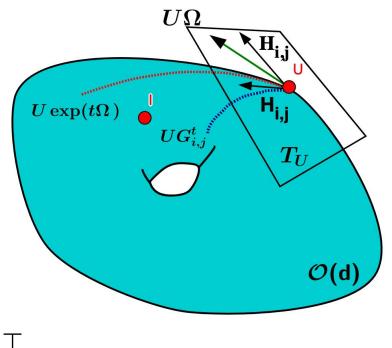


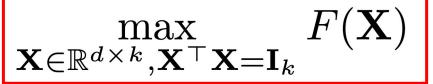
gradient flow approach



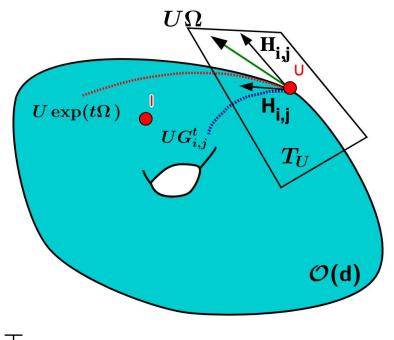


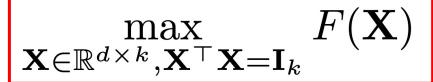
$$\begin{cases} \dot{\mathbf{X}}(t) = \Omega(t)\mathbf{X}(t) \\ \Omega = \Omega(\mathbf{X}, \mathbf{G}) = \mathbf{G}\mathbf{X}^{\top} - \mathbf{X}\mathbf{G}^{\top} \end{cases}$$





$$\begin{cases} \dot{\mathbf{X}}(t) = \Omega(t)\mathbf{X}(t) \\ \Omega = \Omega(\mathbf{X}, \mathbf{G}) = \mathbf{G}\mathbf{X}^{\top} - \mathbf{X}\mathbf{G}^{\top} \end{cases}$$

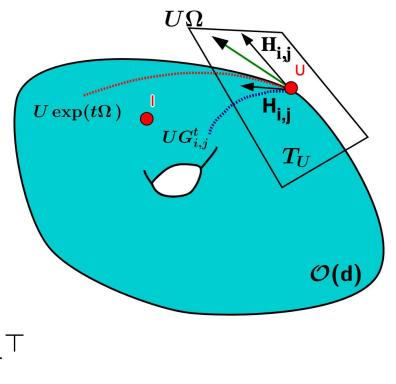




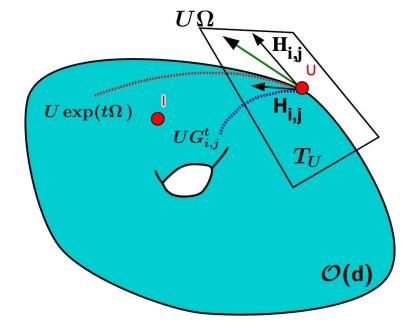
$$\int \mathbf{\dot{X}}(t) = \Omega(t)\mathbf{X}(t)$$

$$\begin{cases} \dot{\mathbf{X}}(t) = \Omega(t)\mathbf{X}(t) \\ \Omega = \Omega(\mathbf{X}, \mathbf{G}) = \mathbf{G}\mathbf{X}^{\top} - \mathbf{X}\mathbf{G}^{\top} \end{cases}$$

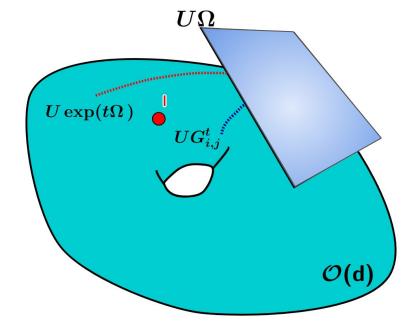
$$\mathbf{X}_{i+1} = \Gamma(\eta\Omega(\mathbf{X}_i, \mathbf{G}_i))\mathbf{X}_i$$

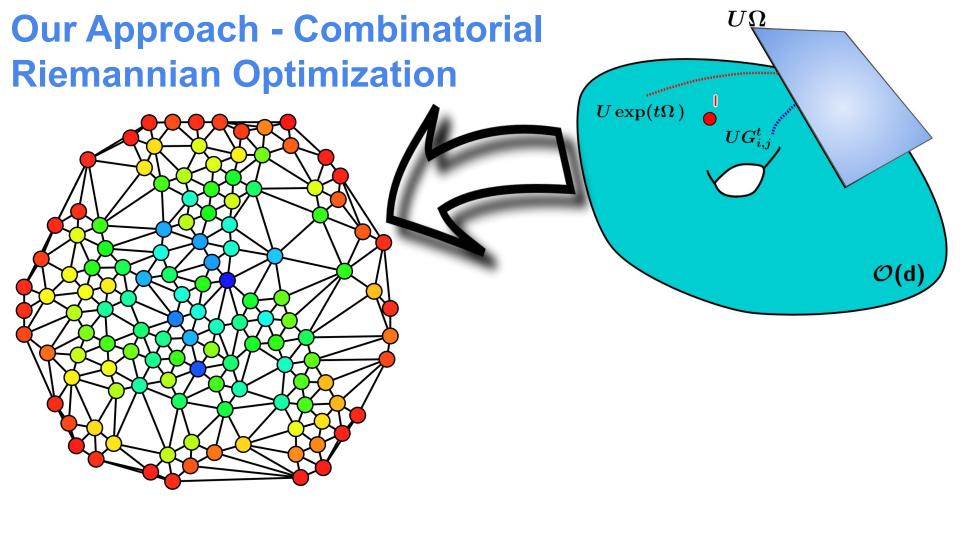


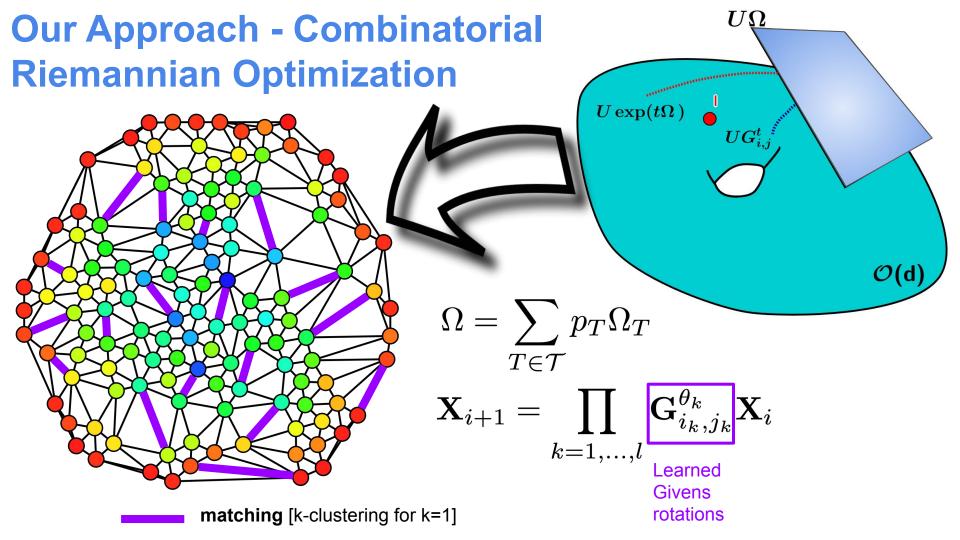
Our Approach - Combinatorial Riemannian Optimization



Our Approach - Combinatorial Riemannian Optimization

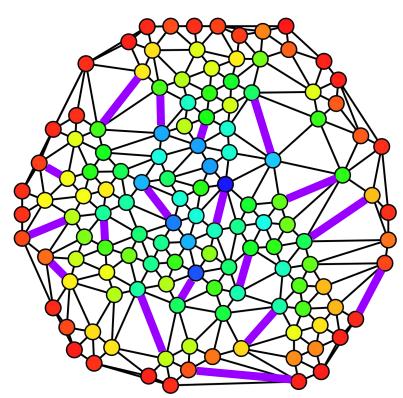






Our Approach - Combinatorial Distribution over

Riemannian Optimization



$$\Omega = \sum_{T \in \mathcal{T}} p_T \Omega_T$$

$$\mathbf{X}_{i+1} = \prod_{k=1,...,l} \mathbf{G}_{i_k,j_k}^{ heta_k} \mathbf{X}_i$$

Matchings

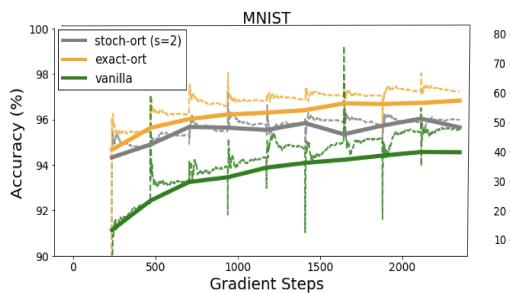
Givens rotations

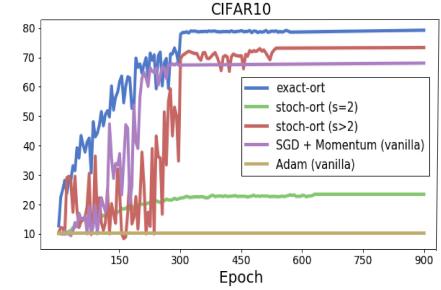
matching [k-clustering for k=1]

Our Algorithm in Action

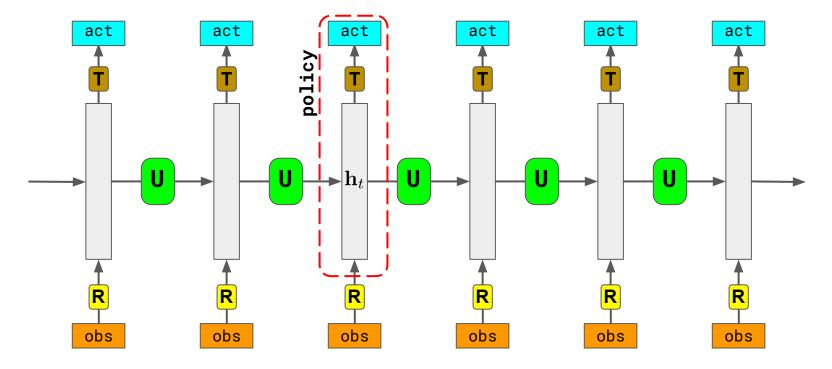
Average number of FLOPS in 10K

	ES-200	ES-400	MNIST	CIFAR
exact-ort	> 1600	> 12800	> 200	> 49K
stoch-ort $(s=2)$	< 68	< 272	< 8.5	< 2K
ortinit-vanRNN $(p = 20)$	> 84	> 656	N/A	N/A
ortinit-vanRNN $(p = 10)$	> 164	> 1296	N/A	N/A
ortinit-vanRNN $(p = 8)$	> 204	> 1616	N/A	N/A
ortinit-vanRNN $(p = 5)$	> 324	> 2576	N/A	N/A
ortinit-vanRNN $(p=4)$	> 404	> 3216	N/A	N/A
stoch-ort $(s = r^*)$	N/A	N/A	< 43	< 14K





Learning Recurrent Reinforcement Learning Policies

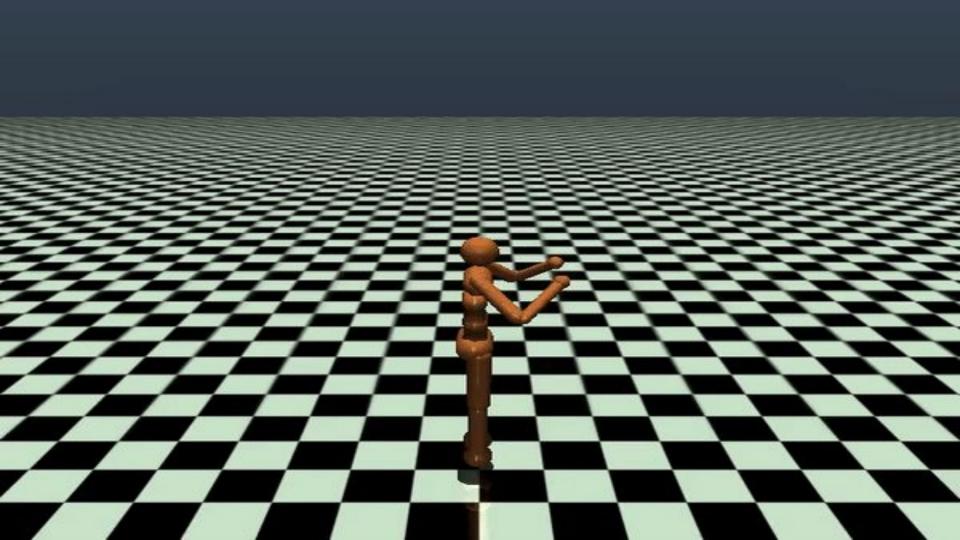


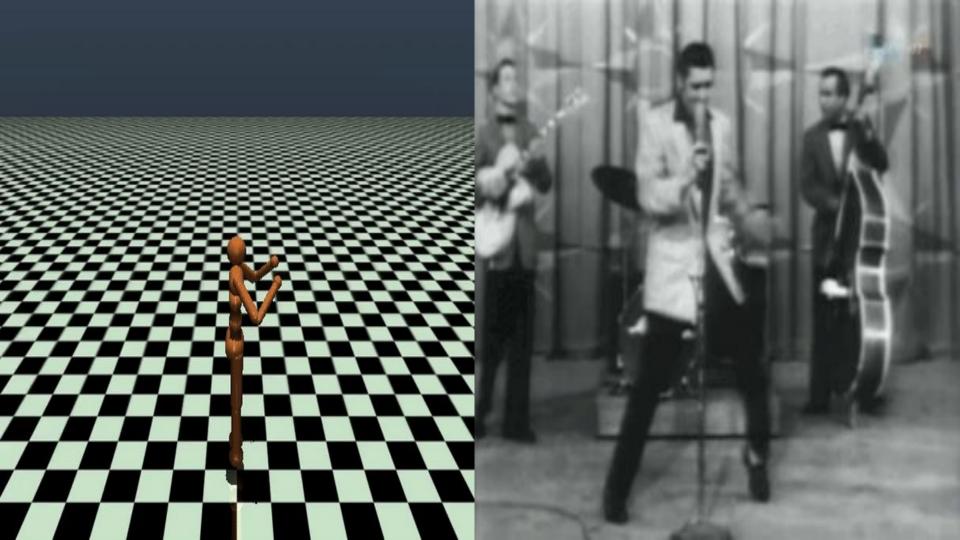
Tested methods:

- affine policies
- vanilla RNNs
- vanilla RNNs with orthogonal initialization
- ortho-RNNs exact Riemannian optimization
- ortho-RNNs stochastic optimization

Affine doesn't fly...

well...even doesn't really walk...



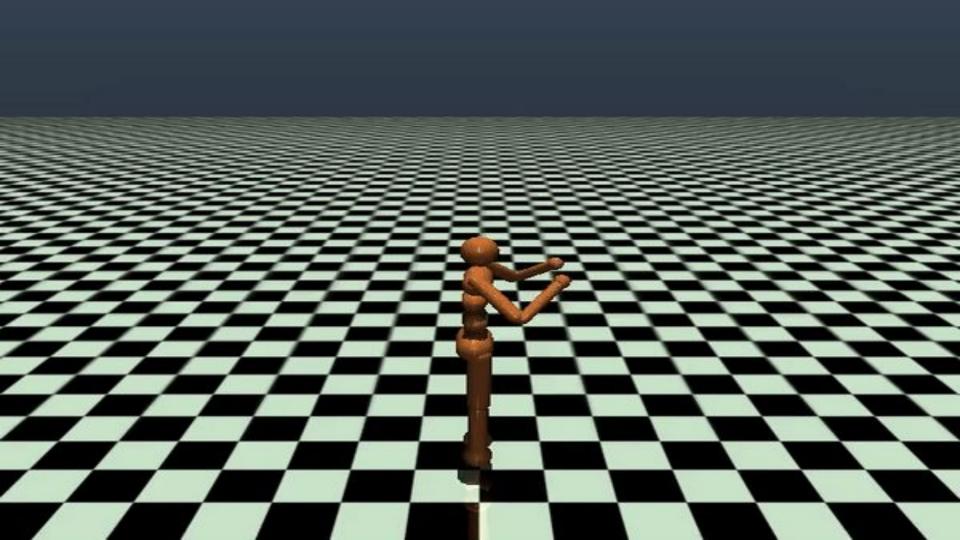


Vanilla RNN

aka in the search for some spin-dance...

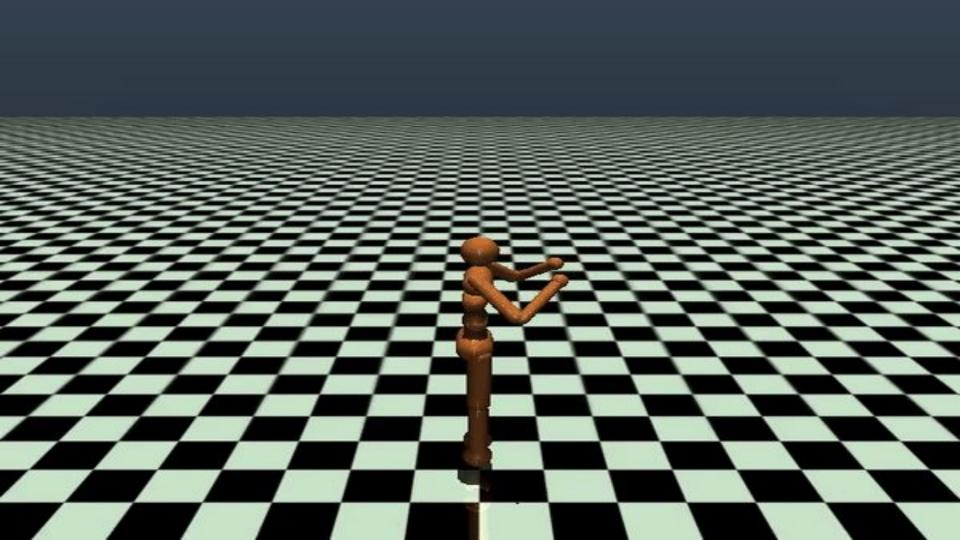
Vanilla RNN-ortho init

no more spins...



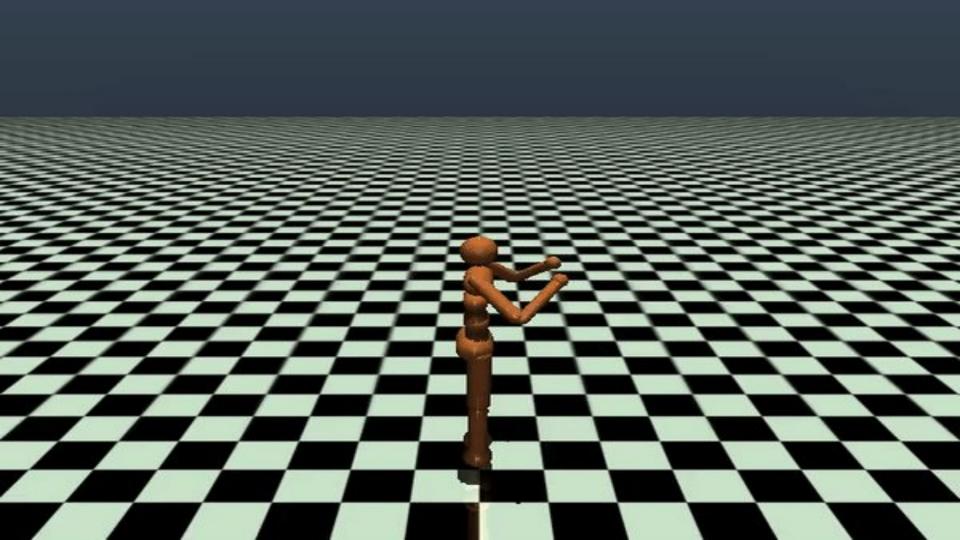
Ortho RNN-nostochastic

getting closer...



Ortho RNN-stochastic

lets see...



The Pirouette



Thank you for the attention

