SGD without Replacement: Sharper Rates for General Smooth Convex Functions

Dheeraj Nagaraj

Massachusetts Institute of Technology

June 12, 2019

Joint work with Praneeth Netrapalli and Prateek Jain (MSR India)

Overview

- Introduction
- 2 Current Results
- Our Results
- 4 Main Techniques

SGD with Replacement (SGD)

Consider observations ξ_1, \ldots, ξ_n . Convex loss function $f(\xi_i) : \mathbb{R}^d \to \mathbb{R}$. Empirical Risk Minimization :

$$x^* = \arg\min_{x \in D} \frac{1}{n} \sum_{i=1}^n f(x, \xi_i) := \arg\min_{x \in D} \nabla \hat{F}(x, \xi_i),.$$

• SGD with replacement (SGD): fix step size sequence $\alpha_t \geq 0$. Start at $x_0 \in D$. For every time step generate independent random variable $I_t \sim \mathrm{unif}([n])$.

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t, \xi_{I_t})$$

- Easy to analyze since independence of I_t ensures that $\mathbb{E}_{I_t} \nabla f(x_t, \xi_{I_t}) = \hat{F}(x_t)$.
- Sharp non-asymptotic guarantees available but seldom used in practice.

SGD without Replacement (SGDo)

In practice, the order of data is fixed (say ξ_1, \ldots, ξ_n) and the data is selected in this order, one after the other. One such pass is called an epoch. The algorithm is run for K epochs. A randomized version of this 'gets rid' of the bad orderings.

• **SGD** without Replacement (SGDo) At the beginning of the k th epoch, draw an independent uniformly random permutation σ_k .

$$x_{k,i} = x_{k,i-1} - \alpha_{k,i} \nabla f(x_{k,i}; \xi_{\sigma_k(i)})$$

- This is closer to the algorithm implemented in practice.
- Harder to analyze since $\mathbb{E}\nabla f(x_{k,i}; \xi_{\sigma_k(i)}) \neq \mathbb{E}\nabla \hat{F}(x_{k,i})$

Experimental Observations

- Experiments¹ found that on many problems SGDo converges as $O(1/K^2)$, which is faster than SGD which converges at O(1/K). (K = number of epochs)
- Theoretically, it wasn't even shown that SGDo 'matches' the rate of SGD for all K.

¹Léon Bottou. "Curiously fast convergence of some stochastic gradient descent algorithms". In: *Proceedings of the symposium on learning and data science, Paris.* 2009.

Currently Known Bounds

PAPER	GUARANTEE	Assumptions	STEP SIZES
GÜRBÜZBALABAN ET AL. 2015 HAOCHEN AND SRA 2018	$O\left(\frac{C(n,d)}{K^2}\right)$ $\tilde{O}\left(\frac{1}{n^2K^2} + \frac{1}{K^3}\right)$	Lipschitz, Strong convexity Smoothness, Hessian Lipschitz $K > \kappa^{1.5} \sqrt{n}$	$\frac{\frac{1}{K}}{\frac{\log nK}{\mu nK}}$
THIS PAPER	$\tilde{O}\left(\frac{1}{nK^2}\right)$	Lipschitz, Strong convexity Smoothness, $K > \kappa^2$	$\frac{\log nK}{\mu nK}$
Shamir 2016	$O\left(\frac{1}{nK}\right)$	Lipschitz, Strong convexity, Smoothness Generalized Linear Function, $K=1$	$\frac{1}{\mu n K}$
THIS PAPER	$O\left(\frac{1}{nK}\right)$	LIPSCHITZ, STRONG CONVEXITY, SMOOTHNESS	$\left \min \left(\frac{2}{L}, \frac{\log nK}{\mu nK} \right) \right $
Shamir 2016	$O\left(\frac{1}{\sqrt{nK}}\right)$		$\frac{1}{\sqrt{nK}}$
THIS PAPER	$O\left(\frac{1}{\sqrt{nK}}\right)$	LIPSCHITZ, SMOOTHNESS	$\min\left(\frac{2}{L}, \frac{1}{\sqrt{nK}}\right)$

Table 1. Comparison of our results with previously known results in terms of number of functions n and number of epochs K. For simplicity, we suppress the dependence on other problem dependent parameters such as Lipschitz constant, strong convexity, smoothness etc.

Small number of Epochs

- Assumptions: $f(\cdot; \xi_i)$ is L smooth, $\|\nabla f(\cdot; \xi_i)\| \leq G$, $\operatorname{diam}(\mathcal{W}) \leq D$.
- Suboptimality $O\left(\frac{GD}{\sqrt{nK}}\right)$ (leading order, General case)
- Suboptimality $O\left(\frac{G^2\log nK}{\mu nK}\right)$ (leading order, μ strongly convex)
- Shamir's result² only works for generalized linear functions and when K=1.
- All other "acceleration" results hold only when K is very large.

²Ohad Shamir. "Without-replacement sampling for stochastic gradient methods". In: *Advances in Neural Information Processing Systems.* 2016, pp. 46–54.

Large number of Epochs

- Assumptions: $f(\cdot; \xi_i)$ is L smooth, $\|\nabla f(\cdot; \xi_i)\| \leq G$ and \hat{F} is μ strongly convex.
- When $K \gtrsim \kappa^2$, Suboptimality: $O\left(\frac{\kappa^2 G^2}{\mu} \frac{(\log nK)^2}{nK^2}\right)$
- Previous results³ require Hessian smoothness and $K \ge \kappa^{1.5} \sqrt{n}$ to give suboptimality of $O\left(\frac{\kappa^4}{n^2 K^2} + \frac{\kappa^4}{K^3}\right)$.
- Without smoothness assumption, there can be no acceleration.

³ Jeffery Z HaoChen and Suvrit Sra. "Random Shuffling Beats SGD after Finite Epochs". In: arXiv preprint arXiv:1806.10077 (2018).

Main Techniques

- Main bottleneck in analysis: $\mathbb{E}\nabla f(x_{k,i}; \xi_{\sigma_k(i)}) \neq \mathbb{E}\nabla \hat{F}(x_{k,i})$.
- If σ'_k is independent of σ_k ,

$$\mathbb{E}\nabla f(x_{k,i};\xi_{\sigma'_k(i)})=\mathbb{E}\nabla \hat{F}(x_{k,i}).$$

- Therefore, $\mathbb{E}\nabla f(x_{k,i};\xi_{\sigma_k(i)}) = \mathbb{E}\nabla \hat{F}(x_{k,i}) + O(d_{\mathrm{W}}(x_{k,i}|\sigma_k(i) = r,x_{k,i})$
- Through coupling arguments: $d_{\mathrm{W}}\left(x_{k,i}\middle|\sigma_{k}(i)=r,x_{k,i}\right)\lesssim lpha_{k,0}G$

Automatic Variance Reduction and Acceleration

- For the smooth and strongly convex case, $\nabla \hat{F}(x^*) = 0 = \frac{1}{n} \sum_{i=1}^n f(x^*, \xi_{\sigma_k(i)})$. (Note that this doesn't hold with independent sampling).
- Therefore, when $x_{k,0} \approx x^*$ we show by coupling arguments that:

$$0 \approx \nabla \hat{F}(x_{k,0}) \approx \frac{1}{n} \sum_{i=1}^{n} f(x_{i,k}, \xi_{\sigma_k(i)})$$

 This is similar to the variance reduction as seen in modifications of SGD like SAGA, SVRG etc.

References

- Bottou, Léon. "Curiously fast convergence of some stochastic gradient descent algorithms". In: *Proceedings of the symposium on learning and data science, Paris.* 2009.
- Gürbüzbalaban, Mert, Asu Ozdaglar, and Pablo Parrilo. "Why random reshuffling beats stochastic gradient descent". In: arXiv preprint arXiv:1510.08560 (2015).
- HaoChen, Jeffery Z and Suvrit Sra. "Random Shuffling Beats SGD after Finite Epochs". In: arXiv preprint arXiv:1806.10077 (2018).
- Shamir, Ohad. "Without-replacement sampling for stochastic gradient methods". In: *Advances in Neural Information Processing Systems*. 2016, pp. 46–54.

Questions?