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SGD with Replacement (SGD)

Consider observations &1, ... ,&,. Convex loss function f(,&;) : RY — R.
Empirical Risk Minimization :

1 < .
= in— f ) = inVF ),
X" = argmin 'El (x,&i) argLnEIBV (x,&),
1=

e SGD with replacement (SGD): fix step size sequence a; > 0. Start
at xg € D. For every time step generate independent random variable
Iy ~ unif([n]).

Xt41 = Xt — OétVf(Xt, glt)

o Easy to analyze since independence of /; ensures that
EltVf(Xt,é-/t) = F(Xt).

@ Sharp non-asymptotic guarantees available but seldom used in
practice.



SGD without Replacement (SGDo)

In practice, the order of data is fixed (say £1,...,&,) and the data is
selected in this order, one after the other. One such pass is called an
epoch. The algorithm is run for K epochs. A randomized version of this
‘gets rid" of the bad orderings.

e SGD without Replacement (SGDo) At the beginning of the k th
epoch, draw an independent uniformly random permutation oy.

Xk,i = Xk,i—1 — ki VE(Xk,i: €y (i)

@ This is closer to the algorithm implemented in practice.
o Harder to analyze since EVf(xx i; &5, (1)) # IEVI—ﬁ(xk,,-)



Experimental Observations

o Experiments! found that on many problems SGDo converges as
O(1/K?), which is faster than SGD which converges at O(1/K). (K
= number of epochs)

@ Theoretically, it wasn't even shown that SGDo ‘matches’ the rate of
SGD for all K.

1 éon Bottou. “Curiously fast convergence of some stochastic gradient descent
algorithms”. In: Proceedings of the symposium on learning and data science, Paris.
2000.



Currently Known Bounds

| PAPER |  GUARANTEE | ASSUMPTIONS | STEP SIZES
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- I I SMOOTHN S
| HAOCHEN AND SRA 2018 | O (= + 75) | s 1B T
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K ik
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K nk
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VnK VK
THIS PAPER O~ LIPSCHITZ, SMOOTHNESS min vd
VnK VnK

Table 1. Comparison of our results with previously known results in terms of number of functions n and number of epochs K. For
simplicity, we suppress the dependence on other problem dependent parameters such as Lipschitz constant, strong convexity, smoothness
etc.



Small number of Epochs

Assumptions: f(-;&;) is L smooth, [|[Vf(+;&)| < G, diam(W) < D.

Suboptimality O (%) (leading order, General case)

Suboptimality O (%) (leading order, y strongly convex)

Shamir’s result® only works for generalized linear functions and when
K=1.

All other “acceleration” results hold only when K is very large.

2Ohad Shamir. "Without-replacement sampling for stochastic gradient methods".
In: Advances in Neural Information Processing Systems. 2016, pp. 46-54.



Large number of Epochs

o Assumptions: f(-;&) is L smooth, [|[Vf(-;&)|| < G and Fis p
strongly convex.

e When K 2 K2, Suboptimality: O <#%>

@ Previous results® require Hessian smoothness and K > x®>\/n to give
. . P x4
suboptimality of O ( 37 + &3 |-

@ Without smoothness assumption, there can be no acceleration.

3 Jeffery Z HaoChen and Suvrit Sra. “Random Shuffling Beats SGD after Finite
Epochs”. In: arXiv preprint arXiv:1806.10077 (2018).



Main Techniques

@ Main bottleneck in analysis: EVf(xx i; &, (i) 7# EVF (xk.;)-

e If o} is independent of oy,
EVf (ki ot (1)) = EVF (ki) -

@ Therefore,
EVf(xk,i: Eou(i)) = EVF (xk,i) + O(dw (xiiow(i) = r,xi,i)
@ Through coupling arguments: dyw (xk,,-|ak(i) = r,xk7,-) S akoG



Automatic Variance Reduction and Acceleration

@ For the smooth and strongly convex case,
VF(x*)=0=1%" f(x*, €o.(i))- (Note that this doesn’t hold with

independent sampling).
@ Therefore, when xj o ~ x* we show by coupling arguments that:

. 1«
0~ VF(xk0) ~ - Z f(Xi k> Eon(i))
i=1

@ This is similar to the variance reduction as seen in modifications of
SGD like SAGA, SVRG etc.
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