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SGD with Replacement (SGD)

Consider observations ξ1, . . . , ξn. Convex loss function f (, ξi ) : Rd → R.
Empirical Risk Minimization :

x∗ = arg min
x∈D

1

n

n∑
i=1

f (x , ξi ) := arg min
x∈D
∇F̂ (x , ξi ), .

SGD with replacement (SGD): fix step size sequence αt ≥ 0. Start
at x0 ∈ D. For every time step generate independent random variable
It ∼ unif([n]).

xt+1 = xt − αt∇f (xt , ξIt )

Easy to analyze since independence of It ensures that
EIt∇f (xt , ξIt ) = F̂ (xt).

Sharp non-asymptotic guarantees available but seldom used in
practice.
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SGD without Replacement (SGDo)

In practice, the order of data is fixed (say ξ1, . . . , ξn) and the data is
selected in this order, one after the other. One such pass is called an
epoch. The algorithm is run for K epochs. A randomized version of this
‘gets rid’ of the bad orderings.

SGD without Replacement (SGDo) At the beginning of the k th
epoch, draw an independent uniformly random permutation σk .

xk,i = xk,i−1 − αk,i∇f (xk,i ; ξσk (i))

This is closer to the algorithm implemented in practice.

Harder to analyze since E∇f (xk,i ; ξσk (i)) 6= E∇F̂ (xk,i )
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Experimental Observations

Experiments1 found that on many problems SGDo converges as
O(1/K 2), which is faster than SGD which converges at O(1/K ). (K
= number of epochs)

Theoretically, it wasn’t even shown that SGDo ‘matches’ the rate of
SGD for all K .

1Léon Bottou. “Curiously fast convergence of some stochastic gradient descent
algorithms”. In: Proceedings of the symposium on learning and data science, Paris.
2009.
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Currently Known Bounds
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Small number of Epochs

Assumptions: f (·; ξi ) is L smooth, ‖∇f (·; ξi )‖ ≤ G , diam(W) ≤ D.

Suboptimality O
(

GD√
nK

)
(leading order, General case)

Suboptimality O
(
G2 log nK
µnK

)
(leading order, µ strongly convex)

Shamir’s result2 only works for generalized linear functions and when
K = 1.

All other “acceleration” results hold only when K is very large.

2Ohad Shamir. “Without-replacement sampling for stochastic gradient methods”.
In: Advances in Neural Information Processing Systems. 2016, pp. 46–54.
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Large number of Epochs

Assumptions: f (·; ξi ) is L smooth, ‖∇f (·; ξi )‖ ≤ G and F̂ is µ
strongly convex.

When K & κ2, Suboptimality: O
(
κ2G2

µ
(log nK)2

nK2

)
Previous results3 require Hessian smoothness and K ≥ κ1.5

√
n to give

suboptimality of O
(

κ4

n2K2 + κ4

K3

)
.

Without smoothness assumption, there can be no acceleration.

3Jeffery Z HaoChen and Suvrit Sra. “Random Shuffling Beats SGD after Finite
Epochs”. In: arXiv preprint arXiv:1806.10077 (2018).
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Main Techniques

Main bottleneck in analysis: E∇f (xk,i ; ξσk (i)) 6= E∇F̂ (xk,i ).

If σ′k is independent of σk ,

E∇f (xk,i ; ξσ′
k (i)

) = E∇F̂ (xk,i ) .

Therefore,
E∇f (xk,i ; ξσk (i)) = E∇F̂ (xk,i ) + O(dW

(
xk,i
∣∣σk(i) = r , xk,i

)
Through coupling arguments: dW

(
xk,i
∣∣σk(i) = r , xk,i

)
. αk,0G
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Automatic Variance Reduction and Acceleration

For the smooth and strongly convex case,
∇F̂ (x∗) = 0 = 1

n

∑n
i=1 f (x∗, ξσk (i)). (Note that this doesn’t hold with

independent sampling).

Therefore, when xk,0 ≈ x∗ we show by coupling arguments that:

0 ≈ ∇F̂ (xk,0) ≈ 1

n

n∑
i=1

f (xi ,k , ξσk (i))

This is similar to the variance reduction as seen in modifications of
SGD like SAGA, SVRG etc.
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Questions?
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