Skip to yearly menu bar Skip to main content


Session

PM: Monte Carlo and Sampling Methods

Room 307

Moderator: Pavel Izmailov

Abstract:

Chat is not available.

Tue 19 July 13:15 - 13:35 PDT

Oral
Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes

Insu Han · Mike Gartrell · Elvis Dohmatob · Amin Karbasi

A determinantal point process (DPP) is an elegant model that assigns a probability to every subset of a collection of $n$ items. While conventionally a DPP is parameterized by a symmetric kernel matrix, removing this symmetry constraint, resulting in nonsymmetric DPPs (NDPPs), leads to significant improvements in modeling power and predictive performance. Recent work has studied an approximate Markov chain Monte Carlo (MCMC) sampling algorithm for NDPPs restricted to size-$k$ subsets (called $k$-NDPPs). However, the runtime of this approach is quadratic in $n$, making it infeasible for large-scale settings. In this work, we develop a scalable MCMC sampling algorithm for $k$-NDPPs with low-rank kernels, thus enabling runtime that is sublinear in $n$. Our method is based on a state-of-the-art NDPP rejection sampling algorithm, which we enhance with a novel approach for efficiently constructing the proposal distribution. Furthermore, we extend our scalable $k$-NDPP sampling algorithm to NDPPs without size constraints. Our resulting sampling method has polynomial time complexity in the rank of the kernel, while the existing approach has runtime that is exponential in the rank. With both a theoretical analysis and experiments on real-world datasets, we verify that our scalable approximate sampling algorithms are orders of magnitude faster than existing sampling approaches for $k$-NDPPs and NDPPs.

Tue 19 July 13:35 - 13:40 PDT

Spotlight
Robust SDE-Based Variational Formulations for Solving Linear PDEs via Deep Learning

Lorenz Richter · Julius Berner

The combination of Monte Carlo methods and deep learning has recently led to efficient algorithms for solving partial differential equations (PDEs) in high dimensions. Related learning problems are often stated as variational formulations based on associated stochastic differential equations (SDEs), which allow the minimization of corresponding losses using gradient-based optimization methods. In respective numerical implementations it is therefore crucial to rely on adequate gradient estimators that exhibit low variance in order to reach convergence accurately and swiftly. In this article, we rigorously investigate corresponding numerical aspects that appear in the context of linear Kolmogorov PDEs. In particular, we systematically compare existing deep learning approaches and provide theoretical explanations for their performances. Subsequently, we suggest novel methods that can be shown to be more robust both theoretically and numerically, leading to substantial performance improvements.

Tue 19 July 13:40 - 13:45 PDT

Spotlight
Hessian-Free High-Resolution Nesterov Acceleration For Sampling

Ruilin Li · Hongyuan Zha · Molei Tao

Nesterov's Accelerated Gradient (NAG) for optimization has better performance than its continuous time limit (noiseless kinetic Langevin) when a finite step-size is employed (Shi et al., 2021). This work explores the sampling counterpart of this phenonemon and proposes a diffusion process, whose discretizations can yield accelerated gradient-based MCMC methods. More precisely, we reformulate the optimizer of NAG for strongly convex functions (NAG-SC) as a Hessian-Free High-Resolution ODE, change its high-resolution coefficient to a hyperparameter, inject appropriate noise, and discretize the resulting diffusion process. The acceleration effect of the new hyperparameter is quantified and it is not an artificial one created by time-rescaling. Instead, acceleration beyond underdamped Langevin in $W_2$ distance is quantitatively established for log-strongly-concave-and-smooth targets, at both the continuous dynamics level and the discrete algorithm level. Empirical experiments in both log-strongly-concave and multi-modal cases also numerically demonstrate this acceleration.

Tue 19 July 13:45 - 13:50 PDT

Spotlight
LSB: Local Self-Balancing MCMC in Discrete Spaces

EMANUELE SANSONE

We present the Local Self-Balancing sampler (LSB), a local Markov Chain Monte Carlo (MCMC) method for sampling in purely discrete domains, which is able to autonomously adapt to the target distribution and to reduce the number of target evaluations required to converge. LSB is based on (i) a parametrization of locally balanced proposals, (ii) an objective function based on mutual information and (iii) a self-balancing learning procedure, which minimises the proposed objective to update the proposal parameters. Experiments on energy-based models and Markov networks show that LSB converges using a smaller number of queries to the oracle distribution compared to recent local MCMC samplers.

Tue 19 July 13:50 - 13:55 PDT

Spotlight
A Langevin-like Sampler for Discrete Distributions

Ruqi Zhang · Xingchao Liu · Qiang Liu

We propose discrete Langevin proposal (DLP), a simple and scalable gradient-basedproposal for sampling complex high-dimensional discrete distributions. In contrast to Gibbs sampling-based methods, DLP is able to update all coordinates in parallel in a single step and the magnitude of changes is controlled by a stepsize. This allows a cheap and efficient exploration in the space of high-dimensional and strongly correlated variables. We prove the efficiency of DLP by showing that the asymptotic bias of its stationary distribution is zero for log-quadratic distributions, and is small for distributions that are close to being log-quadratic. With DLP, we develop several variants of sampling algorithms, including unadjusted, Metropolis-adjusted, stochastic and preconditioned versions. DLP outperforms many popular alternatives on a wide variety of tasks, including Ising models, restricted Boltzmann machines, deep energy-based models, binary neural networks and language generation.

Tue 19 July 13:55 - 14:00 PDT

Spotlight
Scalable Spike-and-Slab

Niloy Biswas · Lester Mackey · Xiao-Li Meng

Spike-and-slab priors are commonly used for Bayesian variable selection, due to their interpretability and favorable statistical properties. However, existing samplers for spike-and-slab posteriors incur prohibitive computational costs when the number of variables is large. In this article, we propose Scalable Spike-and-Slab (S^3), a scalable Gibbs sampling implementation for high-dimensional Bayesian regression with the continuous spike-and-slab prior of George & McCulloch (1993). For a dataset with n observations and p covariates, S^3 has order max{n^2 pt, np} computational cost at iteration t where pt never exceeds the number of covariates switching spike-and-slab states between iterations t and t-1 of the Markov chain. This improves upon the order n^2 p per-iteration cost of state-of-the-art implementations as, typically, p_t is substantially smaller than p. We apply S^3 on synthetic and real-world datasets, demonstrating orders of magnitude speed-ups over existing exact samplers and significant gains in inferential quality over approximate samplers with comparable cost.

Tue 19 July 14:00 - 14:20 PDT

Oral
Nonparametric Involutive Markov Chain Monte Carlo

Carol Mak · Fabian Zaiser · Luke Ong

A challenging problem in probabilistic programming is to develop inference algorithms that work for arbitrary programs in a universal probabilistic programming language (PPL). We present the nonparametric involutive Markov chain Monte Carlo (NP-iMCMC) algorithm as a method for constructing MCMC inference algorithms for nonparametric models expressible in universal PPLs. Building on the unifying involutive MCMC framework, and by providing a general procedure for driving state movement between dimensions, we show that NP-iMCMC can generalise numerous existing iMCMC algorithms to work on nonparametric models. We prove the correctness of the NP-iMCMC sampler. Our empirical study shows that the existing strengths of several iMCMC algorithms carry over to their nonparametric extensions. Applying our method to the recently proposed Nonparametric HMC, an instance of (Multiple Step) NP-iMCMC, we have constructed several nonparametric extensions (all of which new) that exhibit significant performance improvements.

Tue 19 July 14:20 - 14:25 PDT

Spotlight
Continual Repeated Annealed Flow Transport Monte Carlo

Alexander Matthews · Michael Arbel · Danilo J. Rezende · Arnaud Doucet

We propose Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT), a method that combines a sequential Monte Carlo (SMC) sampler (itself a generalization of Annealed Importance Sampling) with variational inference using normalizing flows. The normalizing flows are directly trained to transport between annealing temperatures using a KL divergence for each transition. This optimization objective is itself estimated using the normalizing flow/SMC approximation. We show conceptually and using multiple empirical examples that CRAFT improves on Annealed Flow Transport Monte Carlo (Arbel et al., 2021), on which it builds and also on Markov chain Monte Carlo (MCMC) based Stochastic Normalizing Flows (Wu et al., 2020). By incorporating CRAFT within particle MCMC, we show that such learnt samplers can achieve impressively accurate results on a challenging lattice field theory example.

Tue 19 July 14:25 - 14:30 PDT

Spotlight
Algorithms for the Communication of Samples

Lucas Theis · Nour Ahmed

The efficient communication of noisy data has applications in several areas of machine learning, such as neural compression or differential privacy, and is also known as reverse channel coding or the channel simulation problem. Here we propose two new coding schemes with practical advantages over existing approaches. First, we introduce ordered random coding (ORC) which uses a simple trick to reduce the coding cost of previous approaches. This scheme further illuminates a connection between schemes based on importance sampling and the so-called Poisson functional representation. Second, we describe a hybrid coding scheme which uses dithered quantization to more efficiently communicate samples from distributions with bounded support.

Tue 19 July 14:30 - 14:35 PDT

Spotlight
Low-Precision Stochastic Gradient Langevin Dynamics

Ruqi Zhang · Andrew Wilson · Christopher De Sa

While low-precision optimization has been widely used to accelerate deep learning, low-precision sampling remains largely unexplored. As a consequence, sampling is simply infeasible in many large-scale scenarios, despite providing remarkable benefits to generalization and uncertainty estimation for neural networks. In this paper, we provide the first study of low-precision Stochastic Gradient Langevin Dynamics (SGLD), showing that its costs can be significantly reduced without sacrificing performance, due to its intrinsic ability to handle system noise. We prove that the convergence of low-precision SGLD with full-precision gradient accumulators is less affected by the quantization error than its SGD counterpart in the strongly convex setting. To further enable low-precision gradient accumulators, we develop a new quantization function for SGLD that preserves the variance in each update step. We demonstrate that low-precision SGLD achieves comparable performance to full-precision SGLD with only 8 bits on a variety of deep learning tasks.

Tue 19 July 14:35 - 14:40 PDT

Spotlight
Fast Relative Entropy Coding with A* coding

Gergely Flamich · Stratis Markou · Jose Miguel Hernandez-Lobato

Relative entropy coding (REC) algorithms encode a sample from a target distribution Q using a proposal distribution P, such that the expected codelength is O(KL[Q || P]). REC can be seamlessly integrated with existing learned compression models since, unlike entropy coding, it does not assume discrete Q or P, and does not require quantisation. However, general REC algorithms require an intractable Ω(exp(KL[Q || P])) runtime. We introduce AS* and AD* coding, two REC algorithms based on A* sampling. We prove that, for continuous distributions over the reals, if the density ratio is unimodal, AS* has O(D∞[Q || P]) expected runtime, where D∞[Q || P] is the Renyi ∞-divergence. We provide experimental evidence that AD* also has O(D∞[Q || P]) expected runtime. We prove that AS* and AD* achieve an expected codelength of O(KL[Q || P]). Further, we introduce DAD, an approximate algorithm based on AD which retains its favourable runtime and has bias similar to that of alternative methods. Focusing on VAEs, we propose the IsoKL VAE (IKVAE), which can be used with DAD* to further improve compression efficiency. We evaluate A* coding with (IK)VAEs on MNIST, showing that it can losslessly compress images near the theoretically optimal limit.

Tue 19 July 14:40 - 14:45 PDT

Spotlight
Accurate Quantization of Measures via Interacting Particle-based Optimization

Lantian Xu · Anna Korba · Dejan Slepcev

Approximating a target probability distribution can be cast as an optimization problem where the objective functional measures the dissimilarityto the target. This optimization can be addressed by approximating Wasserstein and related gradient flows. In practice, these are simulated by interacting particle systems, whose stationary states define an empirical measure approximating the target distribution. This approach has been popularized recently to design sampling algorithms, e.g. Stein Variational Gradient Descent, or by minimizing the Maximum Mean or Kernel Stein Discrepancy. However, little is known about quantization properties of these approaches, i.e. how well is the target approximated by a finite number particles.We investigate this question theoretically and numerically. In particular, we prove general upper bounds on the quantization error of MMD and KSD at rates which significantly outperform quantization by i.i.d. samples. We conduct experiments which show that the particle systems at study achieve fast rates in practice, and notably outperform greedy algorithms, such as kernel herding. We compare different gradient flows and highlight their quantization rates. Furthermore we introduce a Normalized Stein Variational Gradient Descent and argue in favor of adaptive kernels, which exhibit faster convergence. Finally we compare the Gaussian and Laplace kernels and argue that the Laplace kernel provides a more robust quantization.