Skip to yearly menu bar Skip to main content


Session

Poster Session 5

Abstract:

Chat is not available.


On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes

Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth

We show that the gradient estimates used in training Deep Gaussian Processes (DGPs) with importance-weighted variational inference are susceptible to signal-to-noise ratio (SNR) issues. Specifically, we show both theoretically and via an extensive empirical evaluation that the SNR of the gradient estimates for the latent variable's variational parameters decreases as the number of importance samples increases. As a result, these gradient estimates degrade to pure noise if the number of importance samples is too large. To address this pathology, we show how doubly-reparameterized gradient estimators, originally proposed for training variational autoencoders, can be adapted to the DGP setting and that the resultant estimators completely remedy the SNR issue, thereby providing more reliable training. Finally, we demonstrate that our fix can lead to consistent improvements in the predictive performance of DGP models.


Tilting the playing field: Dynamical loss functions for machine learning

Miguel Ruiz Garcia · Ge Zhang · Samuel Schoenholz · Andrea Liu

We show that learning can be improved by using loss functions that evolve cyclically during training to emphasize one class at a time. In underparameterized networks, such dynamical loss functions can lead to successful training for networks that fail to find deep minima of the standard cross-entropy loss. In overparameterized networks, dynamical loss functions can lead to better generalization. Improvement arises from the interplay of the changing loss landscape with the dynamics of the system as it evolves to minimize the loss. In particular, as the loss function oscillates, instabilities develop in the form of bifurcation cascades, which we study using the Hessian and Neural Tangent Kernel. Valleys in the landscape widen and deepen, and then narrow and rise as the loss landscape changes during a cycle. As the landscape narrows, the learning rate becomes too large and the network becomes unstable and bounces around the valley. This process ultimately pushes the system into deeper and wider regions of the loss landscape and is characterized by decreasing eigenvalues of the Hessian. This results in better regularized models with improved generalization performance.


Beyond the Pareto Efficient Frontier: Constraint Active Search for Multiobjective Experimental Design

Gustavo Malkomes · Bolong Cheng · Eric Lee · Michael McCourt

Many problems in engineering design and simulation require balancing competing objectives under the presence of uncertainty. Sample-efficient multiobjective optimization methods focus on the objective function values in metric space and ignore the sampling behavior of the design configurations in parameter space. Consequently, they may provide little actionable insight on how to choose designs in the presence of metric uncertainty or limited precision when implementing a chosen design. We propose a new formulation that accounts for the importance of the parameter space and is thus more suitable for multiobjective design problems; instead of searching for the Pareto-efficient frontier, we solicit the desired minimum performance thresholds on all objectives to define regions of satisfaction. We introduce an active search algorithm called Expected Coverage Improvement (ECI) to efficiently discover the region of satisfaction and simultaneously sample diverse acceptable configurations. We demonstrate our algorithm on several design and simulation domains: mechanical design, additive manufacturing, medical monitoring, and plasma physics.


Learning to Generate Noise for Multi-Attack Robustness

Divyam Madaan · Jinwoo Shin · Sung Ju Hwang

Adversarial learning has emerged as one of the successful techniques to circumvent the susceptibility of existing methods against adversarial perturbations. However, the majority of existing defense methods are tailored to defend against a single category of adversarial perturbation (e.g. $\ell_\infty$-attack). In safety-critical applications, this makes these methods extraneous as the attacker can adopt diverse adversaries to deceive the system. Moreover, training on multiple perturbations simultaneously significantly increases the computational overhead during training. To address these challenges, we propose a novel meta-learning framework that explicitly learns to generate noise to improve the model's robustness against multiple types of attacks. Its key component is \emph{Meta Noise Generator (MNG)} that outputs optimal noise to stochastically perturb a given sample, such that it helps lower the error on diverse adversarial perturbations. By utilizing samples generated by MNG, we train a model by enforcing the label consistency across multiple perturbations. We validate the robustness of models trained by our scheme on various datasets and against a wide variety of perturbations, demonstrating that it significantly outperforms the baselines across multiple perturbations with a marginal computational cost.


Few-Shot Conformal Prediction with Auxiliary Tasks

Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay

We develop a novel approach to conformal prediction when the target task has limited data available for training. Conformal prediction identifies a small set of promising output candidates in place of a single prediction, with guarantees that the set contains the correct answer with high probability. When training data is limited, however, the predicted set can easily become unusably large. In this work, we obtain substantially tighter prediction sets while maintaining desirable marginal guarantees by casting conformal prediction as a meta-learning paradigm over exchangeable collections of auxiliary tasks. Our conformalization algorithm is simple, fast, and agnostic to the choice of underlying model, learning algorithm, or dataset. We demonstrate the effectiveness of this approach across a number of few-shot classification and regression tasks in natural language processing, computer vision, and computational chemistry for drug discovery.


Differentially Private Correlation Clustering

Mark Bun · Marek Elias · Janardhan Kulkarni

Correlation clustering is a widely used technique in unsupervised machine learning. Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering. We propose an algorithm that achieves subquadratic additive error compared to the optimal cost. In contrast, straightforward adaptations of existing non-private algorithms all lead to a trivial quadratic error. Finally, we give a lower bound showing that any pure differentially private algorithm for correlation clustering requires additive error Ω(n).


Byzantine-Resilient High-Dimensional SGD with Local Iterations on Heterogeneous Data

Deepesh Data · Suhas Diggavi

We study stochastic gradient descent (SGD) with local iterations in the presence of Byzantine clients, motivated by the federated learning. The clients, instead of communicating with the server in every iteration, maintain their local models, which they update by taking several SGD iterations based on their own datasets and then communicate the net update with the server, thereby achieving communication-efficiency. Furthermore, only a subset of clients communicates with the server at synchronization times. The Byzantine clients may collude and send arbitrary vectors to the server to disrupt the learning process. To combat the adversary, we employ an efficient high-dimensional robust mean estimation algorithm at the server to filter-out corrupt vectors; and to analyze the outlier-filtering procedure, we develop a novel matrix concentration result that may be of independent interest. We provide convergence analyses for both strongly-convex and non-convex smooth objectives in the heterogeneous data setting. We believe that ours is the first Byzantine-resilient local SGD algorithm and analysis with non-trivial guarantees. We corroborate our theoretical results with preliminary experiments for neural network training.


Learning a Universal Template for Few-shot Dataset Generalization

Eleni Triantafillou · Hugo Larochelle · Richard Zemel · Vincent Dumoulin

Few-shot dataset generalization is a challenging variant of the well-studied few-shot classification problem where a diverse training set of several datasets is given, for the purpose of training an adaptable model that can then learn classes from \emph{new datasets} using only a few examples. To this end, we propose to utilize the diverse training set to construct a \emph{universal template}: a partial model that can define a wide array of dataset-specialized models, by plugging in appropriate components. For each new few-shot classification problem, our approach therefore only requires inferring a small number of parameters to insert into the universal template. We design a separate network that produces an initialization of those parameters for each given task, and we then fine-tune its proposed initialization via a few steps of gradient descent. Our approach is more parameter-efficient, scalable and adaptable compared to previous methods, and achieves the state-of-the-art on the challenging Meta-Dataset benchmark.


Whittle Networks: A Deep Likelihood Model for Time Series

Zhongjie Yu · Fabrizio Ventola · Kristian Kersting

hile probabilistic circuits have been extensively explored for tabular data, less attention has been paid to time series. Here, the goal is to estimate joint densities among the entire time series and, in turn, determining, for instance, conditional independence relations between them. To this end, we propose the first probabilistic circuits (PCs) approach for modeling the joint distribution of multivariate time series, called Whittle sum-product networks (WSPNs). WSPNs leverage the Whittle approximation, casting the likelihood in the frequency domain, and place a complex-valued sum-product network, the most prominent PC, over the frequencies. The conditional independence relations among the time series can then be determined efficiently in the spectral domain. Moreover, WSPNs can naturally be placed into the deep neural learning stack for time series, resulting in Whittle Networks, opening the likelihood toolbox for training deep neural models and inspecting their behaviour. Our experiments show that Whittle Networks can indeed capture complex dependencies between time series and provide a useful measure of uncertainty for neural networks.


Mediated Uncoupled Learning: Learning Functions without Direct Input-output Correspondences

Ikko Yamane · Junya Honda · Florian YGER · Masashi Sugiyama

Ordinary supervised learning is useful when we have paired training data of input $X$ and output $Y$. However, such paired data can be difficult to collect in practice. In this paper, we consider the task of predicting $Y$ from $X$ when we have no paired data of them, but we have two separate, independent datasets of $X$ and $Y$ each observed with some mediating variable $U$, that is, we have two datasets $S_X = \{(X_i, U_i)\}$ and $S_Y = \{(U'_j, Y'_j)\}$. A naive approach is to predict $U$ from $X$ using $S_X$ and then $Y$ from $U$ using $S_Y$, but we show that this is not statistically consistent. Moreover, predicting $U$ can be more difficult than predicting $Y$ in practice, e.g., when $U$ has higher dimensionality. To circumvent the difficulty, we propose a new method that avoids predicting $U$ but directly learns $Y = f(X)$ by training $f(X)$ with $S_{X}$ to predict $h(U)$ which is trained with $S_{Y}$ to approximate $Y$. We prove statistical consistency and error bounds of our method and experimentally confirm its practical usefulness.


Off-Policy Confidence Sequences

Nikos Karampatziakis · Paul Mineiro · Aaditya Ramdas

We develop confidence bounds that hold uniformly over time for off-policy evaluation in the contextual bandit setting. These confidence sequences are based on recent ideas from martingale analysis and are non-asymptotic, non-parametric, and valid at arbitrary stopping times. We provide algorithms for computing these confidence sequences that strike a good balance between computational and statistical efficiency. We empirically demonstrate the tightness of our approach in terms of failure probability and width and apply it to the ``gated deployment'' problem of safely upgrading a production contextual bandit system.


GANMEX: One-vs-One Attributions using GAN-based Model Explainability

Sheng-Min Shih · Pin-Ju Tien · Zohar Karnin

Attribution methods have been shown as promising approaches for identifying key features that led to learned model predictions. While most existing attribution methods rely on a baseline input for performing feature perturbations, limited research has been conducted to address the baseline selection issues. Poor choices of baselines limit the ability of one-vs-one explanations for multi-class classifiers, which means the attribution methods were not able to explain why an input belongs to its original class but not the other specified target class. Achieving one-vs-one explanation is crucial when certain classes are more similar than others, e.g. two bird types among multiple animals, by focusing on key differentiating features rather than shared features across classes. In this paper, we present GANMEX, a novel approach applying Generative Adversarial Networks (GAN) by incorporating the to-be-explained classifier as part of the adversarial networks. Our approach effectively selects the baseline as the closest realistic sample belong to the target class, which allows attribution methods to provide true one-vs-one explanations. We showed that GANMEX baselines improved the saliency maps and led to stronger performance on multiple evaluation metrics over the existing baselines. Existing attribution results are known for being insensitive to model randomization, and we demonstrated that GANMEX baselines led to better outcome under the cascading randomization of the model.


Geometric convergence of elliptical slice sampling

Viacheslav Natarovskii · Daniel Rudolf · Björn Sprungk

For Bayesian learning, given likelihood function and Gaussian prior, the elliptical slice sampler, introduced by Murray, Adams and MacKay 2010, provides a tool for the construction of a Markov chain for approximate sampling of the underlying posterior distribution. Besides of its wide applicability and simplicity its main feature is that no tuning is necessary. Under weak regularity assumptions on the posterior density we show that the corresponding Markov chain is geometrically ergodic and therefore yield qualitative convergence guarantees. We illustrate our result for Gaussian posteriors as they appear in Gaussian process regression in a fully Gaussian scenario, which for example is exhibited in Gaussian process regression, as well as in a setting of a multi-modal distribution. Remarkably, our numerical experiments indicate a dimension-independent performance of elliptical slice sampling even in situations where our ergodicity result does not apply.


Domain Generalization using Causal Matching

Divyat Mahajan · Shruti Tople · Amit Sharma

In the domain generalization literature, a common objective is to learn representations independent of the domain after conditioning on the class label. We show that this objective is not sufficient: there exist counter-examples where a model fails to generalize to unseen domains even after satisfying class-conditional domain invariance. We formalize this observation through a structural causal model and show the importance of modeling within-class variations for generalization. Specifically, classes contain objects that characterize specific causal features, and domains can be interpreted as interventions on these objects that change non-causal features. We highlight an alternative condition: inputs across domains should have the same representation if they are derived from the same object. Based on this objective, we propose matching-based algorithms when base objects are observed (e.g., through data augmentation) and approximate the objective when objects are not observed (MatchDG). Our simple matching-based algorithms are competitive to prior work on out-of-domain accuracy for rotated MNIST, Fashion-MNIST, PACS, and Chest-Xray datasets. Our method MatchDG also recovers ground-truth object matches: on MNIST and Fashion-MNIST, top-10 matches from MatchDG have over 50% overlap with ground-truth matches.


GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings

Matthias Fey · Jan Eric Lenssen · Frank Weichert · Jure Leskovec

We present GNNAutoScale (GAS), a framework for scaling arbitrary message-passing GNNs to large graphs. GAS prunes entire sub-trees of the computation graph by utilizing historical embeddings from prior training iterations, leading to constant GPU memory consumption in respect to input node size without dropping any data. While existing solutions weaken the expressive power of message passing due to sub-sampling of edges or non-trainable propagations, our approach is provably able to maintain the expressive power of the original GNN. We achieve this by providing approximation error bounds of historical embeddings and show how to tighten them in practice. Empirically, we show that the practical realization of our framework, PyGAS, an easy-to-use extension for PyTorch Geometric, is both fast and memory-efficient, learns expressive node representations, closely resembles the performance of their non-scaling counterparts, and reaches state-of-the-art performance on large-scale graphs.


Graph Convolution for Semi-Supervised Classification: Improved Linear Separability and Out-of-Distribution Generalization

Aseem Baranwal · Kimon Fountoulakis · Aukosh Jagannath

Recently there has been increased interest in semi-supervised classification in the presence of graphical information. A new class of learning models has emerged that relies, at its most basic level, on classifying the data after first applying a graph convolution. To understand the merits of this approach, we study the classification of a mixture of Gaussians, where the data corresponds to the node attributes of a stochastic block model. We show that graph convolution extends the regime in which the data is linearly separable by a factor of roughly $1/\sqrt{D}$, where $D$ is the expected degree of a node, as compared to the mixture model data on its own. Furthermore, we find that the linear classifier obtained by minimizing the cross-entropy loss after the graph convolution generalizes to out-of-distribution data where the unseen data can have different intra- and inter-class edge probabilities from the training data.


GRAND: Graph Neural Diffusion

Ben Chamberlain · James Rowbottom · Maria Gorinova · Michael Bronstein · Stefan Webb · Emanuele Rossi

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE. In our model, the layer structure and topology correspond to the discretisation choices of temporal and spatial operators. Our approach allows a principled development of a broad new class of GNNs that are able to address the common plights of graph learning models such as depth, oversmoothing, and bottlenecks. Key to the success of our models are stability with respect to perturbations in the data and this is addressed for both implicit and explicit discretisation schemes. We develop linear and nonlinear versions of GRAND, which achieve competitive results on many standard graph benchmarks.


PHEW : Constructing Sparse Networks that Learn Fast and Generalize Well without Training Data

Shreyas Malakarjun Patil · Constantine Dovrolis

Methods that sparsify a network at initialization are important in practice because they greatly improve the efficiency of both learning and inference. Our work is based on a recently proposed decomposition of the Neural Tangent Kernel (NTK) that has decoupled the dynamics of the training process into a data-dependent component and an architecture-dependent kernel – the latter referred to as Path Kernel. That work has shown how to design sparse neural networks for faster convergence, without any training data, using the Synflow-L2 algorithm. We first show that even though Synflow-L2 is optimal in terms of convergence, for a given network density, it results in sub-networks with ``bottleneck'' (narrow) layers – leading to poor performance as compared to other data-agnostic methods that use the same number of parameters. Then we propose a new method to construct sparse networks, without any training data, referred to as Paths with Higher-Edge Weights (PHEW). PHEW is a probabilistic network formation method based on biased random walks that only depends on the initial weights. It has similar path kernel properties as Synflow-L2 but it generates much wider layers, resulting in better generalization and performance. PHEW achieves significant improvements over the data-independent SynFlow and SynFlow-L2 methods at a wide range of network densities.


Conservative Objective Models for Effective Offline Model-Based Optimization

Brandon Trabucco · Aviral Kumar · Xinyang Geng · Sergey Levine

In this paper, we aim to solve data-driven model-based optimization (MBO) problems, where the goal is to find a design input that maximizes an unknown objective function provided access to only a static dataset of inputs and their corresponding objective values. Such data-driven optimization procedures are the only practical methods in many real-world domains where active data collection is expensive (e.g., when optimizing over proteins) or dangerous (e.g., when optimizing over aircraft designs, actively evaluating malformed aircraft designs is unsafe). Typical methods for MBO that optimize the input against a learned model of the unknown score function are affected by erroneous overestimation in the learned model caused due to distributional shift, that drives the optimizer to low-scoring or invalid inputs. To overcome this, we propose conservative objective models (COMs), a method that learns a model of the objective function which lower bounds the actual value of the ground-truth objective on out-of-distribution inputs and uses it for optimization. In practice, COMs outperform a number existing methods on a wide range of MBO problems, including optimizing controller parameters, robot morphologies, and superconducting materials.


Non-Negative Bregman Divergence Minimization for Deep Direct Density Ratio Estimation

Masahiro Kato · Takeshi Teshima

Density ratio estimation (DRE) is at the core of various machine learning tasks such as anomaly detection and domain adaptation. In the DRE literature, existing studies have extensively studied methods based on Bregman divergence (BD) minimization. However, when we apply the BD minimization with highly flexible models, such as deep neural networks, it tends to suffer from what we call train-loss hacking, which is a source of over-fitting caused by a typical characteristic of empirical BD estimators. In this paper, to mitigate train-loss hacking, we propose non-negative correction for empirical BD estimators. Theoretically, we confirm the soundness of the proposed method through a generalization error bound. In our experiments, the proposed methods show favorable performances in inlier-based outlier detection.


Differentially-Private Clustering of Easy Instances

Edith Cohen · Haim Kaplan · Yishay Mansour · Uri Stemmer · Eliad Tsfadia

Clustering is a fundamental problem in data analysis. In differentially private clustering, the goal is to identify k cluster centers without disclosing information on individual data points. Despite significant research progress, the problem had so far resisted practical solutions. In this work we aim at providing simple implementable differentrially private clustering algorithms when the the data is "easy," e.g., when there exists a significant separation between the clusters.

For the easy instances we consider, we have a simple implementation based on utilizing non-private clustering algorithms, and combining them privately. We are able to get improved sample complexity bounds in some cases of Gaussian mixtures and k-means. We complement our theoretical algorithms with experiments of simulated data.


To be Robust or to be Fair: Towards Fairness in Adversarial Training

Han Xu · Xiaorui Liu · Yaxin Li · Anil Jain · Jiliang Tang

Adversarial training algorithms have been proved to be reliable to improve machine learning models' robustness against adversarial examples. However, we find that adversarial training algorithms tend to introduce severe disparity of accuracy and robustness between different groups of data. For instance, PGD adversarially trained ResNet18 model on CIFAR-10 has 93% clean accuracy and 67% PGD l_infty-8 adversarial accuracy on the class ''automobile'' but only 65% and 17% on class ''cat''. This phenomenon happens in balanced datasets and does not exist in naturally trained models when only using clean samples. In this work, we empirically and theoretically show that this phenomenon can generally happen under adversarial training algorithms which minimize DNN models' robust errors. Motivated by these findings, we propose a Fair-Robust-Learning (FRL) framework to mitigate this unfairness problem when doing adversarial defenses and experimental results validate the effectiveness of FRL.


Active Testing: Sample-Efficient Model Evaluation

Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth

We introduce a new framework for sample-efficient model evaluation that we call active testing. While approaches like active learning reduce the number of labels needed for model training, existing literature largely ignores the cost of labeling test data, typically unrealistically assuming large test sets for model evaluation. This creates a disconnect to real applications, where test labels are important and just as expensive, e.g. for optimizing hyperparameters. Active testing addresses this by carefully selecting the test points to label, ensuring model evaluation is sample-efficient. To this end, we derive theoretically-grounded and intuitive acquisition strategies that are specifically tailored to the goals of active testing, noting these are distinct to those of active learning. As actively selecting labels introduces a bias; we further show how to remove this bias while reducing the variance of the estimator at the same time. Active testing is easy to implement and can be applied to any supervised machine learning method. We demonstrate its effectiveness on models including WideResNets and Gaussian processes on datasets including Fashion-MNIST and CIFAR-100.


Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Michael Chang · Sid Kaushik · Sergey Levine · Thomas Griffiths

Many transfer problems require re-using previously optimal decisions for solving new tasks, which suggests the need for learning algorithms that can modify the mechanisms for choosing certain actions independently of those for choosing others. However, there is currently no formalism nor theory for how to achieve this kind of modular credit assignment. To answer this question, we define modular credit assignment as a constraint on minimizing the algorithmic mutual information among feedback signals for different decisions. We introduce what we call the modularity criterion for testing whether a learning algorithm satisfies this constraint by performing causal analysis on the algorithm itself. We generalize the recently proposed societal decision-making framework as a more granular formalism than the Markov decision process to prove that for decision sequences that do not contain cycles, certain single-step temporal difference action-value methods meet this criterion while all policy-gradient methods do not. Empirical evidence suggests that such action-value methods are more sample efficient than policy-gradient methods on transfer problems that require only sparse changes to a sequence of previously optimal decisions.


Adaptive Sampling for Best Policy Identification in Markov Decision Processes

Aymen Al Marjani · Alexandre Proutiere

We investigate the problem of best-policy identification in discounted Markov Decision Processes (MDPs) when the learner has access to a generative model. The objective is to devise a learning algorithm returning the best policy as early as possible. We first derive a problem-specific lower bound of the sample complexity satisfied by any learning algorithm. This lower bound corresponds to an optimal sample allocation that solves a non-convex program, and hence, is hard to exploit in the design of efficient algorithms. We then provide a simple and tight upper bound of the sample complexity lower bound, whose corresponding nearly-optimal sample allocation becomes explicit. The upper bound depends on specific functionals of the MDP such as the sub-optimality gaps and the variance of the next-state value function, and thus really captures the hardness of the MDP. Finally, we devise KLB-TS (KL Ball Track-and-Stop), an algorithm tracking this nearly-optimal allocation, and provide asymptotic guarantees for its sample complexity (both almost surely and in expectation). The advantages of KLB-TS against state-of-the-art algorithms are discussed and illustrated numerically.


Flow-based Attribution in Graphical Models: A Recursive Shapley Approach

Raghav Singal · George Michailidis · Hoiyi Ng

We study the attribution problem in a graphical model, wherein the objective is to quantify how the effect of changes at the source nodes propagates through the graph. We develop a model-agnostic flow-based attribution method, called recursive Shapley value (RSV). RSV generalizes a number of existing node-based methods and uniquely satisfies a set of flow-based axioms. In addition to admitting a natural characterization for linear models and facilitating mediation analysis for non-linear models, RSV satisfies a mix of desirable properties discussed in the recent literature, including implementation invariance, sensitivity, monotonicity, and affine scale invariance.


Dataset Condensation with Differentiable Siamese Augmentation

Bo Zhao · Hakan Bilen

In many machine learning problems, large-scale datasets have become the de-facto standard to train state-of-the-art deep networks at the price of heavy computation load. In this paper, we focus on condensing large training sets into significantly smaller synthetic sets which can be used to train deep neural networks from scratch with minimum drop in performance. Inspired from the recent training set synthesis methods, we propose Differentiable Siamese Augmentation that enables effective use of data augmentation to synthesize more informative synthetic images and thus achieves better performance when training networks with augmentations. Experiments on multiple image classification benchmarks demonstrate that the proposed method obtains substantial gains over the state-of-the-art, 7% improvements on CIFAR10 and CIFAR100 datasets. We show with only less than 1% data that our method achieves 99.6%, 94.9%, 88.5%, 71.5% relative performance on MNIST, FashionMNIST, SVHN, CIFAR10 respectively. We also explore the use of our method in continual learning and neural architecture search, and show promising results.


Rissanen Data Analysis: Examining Dataset Characteristics via Description Length

Ethan Perez · Douwe Kiela · Kyunghyun Cho

We introduce a method to determine if a certain capability helps to achieve an accurate model of given data. We view labels as being generated from the inputs by a program composed of subroutines with different capabilities, and we posit that a subroutine is useful if and only if the minimal program that invokes it is shorter than the one that does not. Since minimum program length is uncomputable, we instead estimate the labels' minimum description length (MDL) as a proxy, giving us a theoretically-grounded method for analyzing dataset characteristics. We call the method Rissanen Data Analysis (RDA) after the father of MDL, and we showcase its applicability on a wide variety of settings in NLP, ranging from evaluating the utility of generating subquestions before answering a question, to analyzing the value of rationales and explanations, to investigating the importance of different parts of speech, and uncovering dataset gender bias.


A Scalable Second Order Method for Ill-Conditioned Matrix Completion from Few Samples

Christian Kümmerle · Claudio Mayrink Verdun

We propose an iterative algorithm for low-rank matrix completion with that can be interpreted as an iteratively reweighted least squares (IRLS) algorithm, a saddle-escaping smoothing Newton method or a variable metric proximal gradient method applied to a non-convex rank surrogate. It combines the favorable data-efficiency of previous IRLS approaches with an improved scalability by several orders of magnitude. We establish the first local convergence guarantee from a minimal number of samples for that class of algorithms, showing that the method attains a local quadratic convergence rate. Furthermore, we show that the linear systems to be solved are well-conditioned even for very ill-conditioned ground truth matrices. We provide extensive experiments, indicating that unlike many state-of-the-art approaches, our method is able to complete very ill-conditioned matrices with a condition number of up to $10^{10}$ from few samples, while being competitive in its scalability.


Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design

Adam Foster · Desi Ivanova · ILYAS MALIK · Tom Rainforth

We introduce Deep Adaptive Design (DAD), a method for amortizing the cost of adaptive Bayesian experimental design that allows experiments to be run in real-time. Traditional sequential Bayesian optimal experimental design approaches require substantial computation at each stage of the experiment. This makes them unsuitable for most real-world applications, where decisions must typically be made quickly. DAD addresses this restriction by learning an amortized design network upfront and then using this to rapidly run (multiple) adaptive experiments at deployment time. This network represents a design policy which takes as input the data from previous steps, and outputs the next design using a single forward pass; these design decisions can be made in milliseconds during the live experiment. To train the network, we introduce contrastive information bounds that are suitable objectives for the sequential setting, and propose a customized network architecture that exploits key symmetries. We demonstrate that DAD successfully amortizes the process of experimental design, outperforming alternative strategies on a number of problems.


Neural Transformation Learning for Deep Anomaly Detection Beyond Images

Chen Qiu · Timo Pfrommer · Marius Kloft · Stephan Mandt · Maja Rudolph

Data transformations (e.g. rotations, reflections, and cropping) play an important role in self-supervised learning. Typically, images are transformed into different views, and neural networks trained on tasks involving these views produce useful feature representations for downstream tasks, including anomaly detection. However, for anomaly detection beyond image data, it is often unclear which transformations to use. Here we present a simple end-to-end procedure for anomaly detection with learnable transformations. The key idea is to embed the transformed data into a semantic space such that the transformed data still resemble their untransformed form, while different transformations are easily distinguishable. Extensive experiments on time series show that our proposed method outperforms existing approaches in the one-vs.-rest setting and is competitive in the more challenging n-vs.-rest anomaly-detection task. On medical and cyber-security tabular data, our method learns domain-specific transformations and detects anomalies more accurately than previous work.


Differentiable Particle Filtering via Entropy-Regularized Optimal Transport

Adrien Corenflos · James Thornton · George Deligiannidis · Arnaud Doucet

Particle Filtering (PF) methods are an established class of procedures for performing inference in non-linear state-space models. Resampling is a key ingredient of PF necessary to obtain low variance likelihood and states estimates. However, traditional resampling methods result in PF-based loss functions being non-differentiable with respect to model and PF parameters. In a variational inference context, resampling also yields high variance gradient estimates of the PF-based evidence lower bound. By leveraging optimal transport ideas, we introduce a principled differentiable particle filter and provide convergence results. We demonstrate this novel method on a variety of applications.


Detecting Rewards Deterioration in Episodic Reinforcement Learning

Ido Greenberg · Shie Mannor

In many RL applications, once training ends, it is vital to detect any deterioration in the agent performance as soon as possible. Furthermore, it often has to be done without modifying the policy and under minimal assumptions regarding the environment. In this paper, we address this problem by focusing directly on the rewards and testing for degradation. We consider an episodic framework, where the rewards within each episode are not independent, nor identically-distributed, nor Markov. We present this problem as a multivariate mean-shift detection problem with possibly partial observations. We define the mean-shift in a way corresponding to deterioration of a temporal signal (such as the rewards), and derive a test for this problem with optimal statistical power. Empirically, on deteriorated rewards in control problems (generated using various environment modifications), the test is demonstrated to be more powerful than standard tests - often by orders of magnitude. We also suggest a novel Bootstrap mechanism for False Alarm Rate control (BFAR), applicable to episodic (non-i.i.d) signal and allowing our test to run sequentially in an online manner. Our method does not rely on a learned model of the environment, is entirely external to the agent, and in fact can be applied to detect changes or drifts in any episodic signal.


PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees

Jonas Rothfuss · Vincent Fortuin · Martin Josifoski · Andreas Krause

Meta-learning can successfully acquire useful inductive biases from data. Yet, its generalization properties to unseen learning tasks are poorly understood. Particularly if the number of meta-training tasks is small, this raises concerns about overfitting. We provide a theoretical analysis using the PAC-Bayesian framework and derive novel generalization bounds for meta-learning. Using these bounds, we develop a class of PAC-optimal meta-learning algorithms with performance guarantees and a principled meta-level regularization. Unlike previous PAC-Bayesian meta-learners, our method results in a standard stochastic optimization problem which can be solved efficiently and scales well.When instantiating our PAC-optimal hyper-posterior (PACOH) with Gaussian processes and Bayesian Neural Networks as base learners, the resulting methods yield state-of-the-art performance, both in terms of predictive accuracy and the quality of uncertainty estimates. Thanks to their principled treatment of uncertainty, our meta-learners can also be successfully employed for sequential decision problems.


Variational Auto-Regressive Gaussian Processes for Continual Learning

Sanyam Kapoor · Theofanis Karaletsos · Thang Bui

Through sequential construction of posteriors on observing data online, Bayes’ theorem provides a natural framework for continual learning. We develop Variational Auto-Regressive Gaussian Processes (VAR-GPs), a principled posterior updating mechanism to solve sequential tasks in continual learning. By relying on sparse inducing point approximations for scalable posteriors, we propose a novel auto-regressive variational distribution which reveals two fruitful connections to existing results in Bayesian inference, expectation propagation and orthogonal inducing points. Mean predictive entropy estimates show VAR-GPs prevent catastrophic forgetting, which is empirically supported by strong performance on modern continual learning benchmarks against competitive baselines. A thorough ablation study demonstrates the efficacy of our modeling choices.


Local Correlation Clustering with Asymmetric Classification Errors

Jafar Jafarov · Sanchit Kalhan · Konstantin Makarychev · Yury Makarychev

In the Correlation Clustering problem, we are given a complete weighted graph $G$ with its edges labeled as ``similar" and ``dissimilar" by a noisy binary classifier. For a clustering $\mathcal{C}$ of graph $G$, a similar edge is in disagreement with $\mathcal{C}$, if its endpoints belong to distinct clusters; and a dissimilar edge is in disagreement with $\mathcal{C}$ if its endpoints belong to the same cluster. The disagreements vector, $\disagree$, is a vector indexed by the vertices of $G$ such that the $v$-th coordinate $\disagree_v$ equals the weight of all disagreeing edges incident on $v$. The goal is to produce a clustering that minimizes the $\ell_p$ norm of the disagreements vector for $p\geq 1$. We study the $\ell_p$ objective in Correlation Clustering under the following assumption: Every similar edge has weight in $[\alpha\mathbf{w},\mathbf{w}]$ and every dissimilar edge has weight at least $\alpha\mathbf{w}$ (where $\alpha \leq 1$ and $\mathbf{w}>0$ is a scaling parameter). We give an $O\left((\nicefrac{1}{\alpha})^{\nicefrac{1}{2}-\nicefrac{1}{2p}}\cdot \log\nicefrac{1}{\alpha}\right)$ approximation algorithm for this problem. Furthermore, we show an almost matching convex programming integrality gap.


Active Learning of Continuous-time Bayesian Networks through Interventions

Dominik Linzner · Heinz Koeppl

We consider the problem of learning structures and parameters of Continuous-time Bayesian Networks (CTBNs) from time-course data under minimal experimental resources. In practice, the cost of generating experimental data poses a bottleneck, especially in the natural and social sciences. A popular approach to overcome this is Bayesian optimal experimental design (BOED). However, BOED becomes infeasible in high-dimensional settings, as it involves integration over all possible experimental outcomes. We propose a novel criterion for experimental design based on a variational approximation of the expected information gain. We show that for CTBNs, a semi-analytical expression for this criterion can be calculated for structure and parameter learning. By doing so, we can replace sampling over experimental outcomes by solving the CTBNs master-equation, for which scalable approximations exist. This alleviates the computational burden of sampling possible experimental outcomes in high-dimensions. We employ this framework to recommend interventional sequences. In this context, we extend the CTBN model to conditional CTBNs to incorporate interventions. We demonstrate the performance of our criterion on synthetic and real-world data.


Adapting to Delays and Data in Adversarial Multi-Armed Bandits

András György · Pooria Joulani

We consider the adversarial multi-armed bandit problem under delayed feedback. We analyze variants of the Exp3 algorithm that tune their step size using only information (about the losses and delays) available at the time of the decisions, and obtain regret guarantees that adapt to the observed (rather than the worst-case) sequences of delays and/or losses. First, through a remarkably simple proof technique, we show that with proper tuning of the step size, the algorithm achieves an optimal (up to logarithmic factors) regret of order $\sqrt{\log(K)(TK + D)}$ both in expectation and in high probability, where $K$ is the number of arms, $T$ is the time horizon, and $D$ is the cumulative delay. The high-probability version of the bound, which is the first high-probability delay-adaptive bound in the literature, crucially depends on the use of implicit exploration in estimating the losses. Then, following Zimmert and Seldin (2019), we extend these results so that the algorithm can ``skip'' rounds with large delays, resulting in regret bounds of order $\sqrt{TK\log(K)} + |R| + \sqrt{D_{\bar{R}}\log(K)}$, where $R$ is an arbitrary set of rounds (which are skipped) and $D_{\bar{R}}$ is the cumulative delay of the feedback for other rounds. Finally, we present another, data-adaptive (AdaGrad-style) version of the algorithm for which the regret adapts to the observed (delayed) losses instead of only adapting to the cumulative delay (this algorithm requires an a priori upper bound on the maximum delay, or the advance knowledge of the delay for each decision when it is made). The resulting bound can be orders of magnitude smaller on benign problems, and it can be shown that the delay only affects the regret through the loss of the best arm.


Privacy-Preserving Video Classification with Convolutional Neural Networks

Sikha Pentyala · Rafael Dowsley · Martine De Cock

Many video classification applications require access to personal data, thereby posing an invasive security risk to the users' privacy. We propose a privacy-preserving implementation of single-frame method based video classification with convolutional neural networks that allows a party to infer a label from a video without necessitating the video owner to disclose their video to other entities in an unencrypted manner. Similarly, our approach removes the requirement of the classifier owner from revealing their model parameters to outside entities in plaintext. To this end, we combine existing Secure Multi-Party Computation (MPC) protocols for private image classification with our novel MPC protocols for oblivious single-frame selection and secure label aggregation across frames. The result is an end-to-end privacy-preserving video classification pipeline. We evaluate our proposed solution in an application for private human emotion recognition. Our results across a variety of security settings, spanning honest and dishonest majority configurations of the computing parties, and for both passive and active adversaries, demonstrate that videos can be classified with state-of-the-art accuracy, and without leaking sensitive user information.


Local Algorithms for Finding Densely Connected Clusters

Peter Macgregor · He Sun

Local graph clustering is an important algorithmic technique for analysing massive graphs, and has been widely applied in many research fields of data science. While the objective of most (local) graph clustering algorithms is to find a vertex set of low conductance, there has been a sequence of recent studies that highlight the importance of the inter-connection between clusters when analysing real-world datasets. Following this line of research, in this work we study local algorithms for finding a pair of vertex sets defined with respect to their inter-connection and their relationship with the rest of the graph. The key to our analysis is a new reduction technique that relates the structure of multiple sets to a single vertex set in the reduced graph. Among many potential applications, we show that our algorithms successfully recover densely connected clusters in the Interstate Disputes Dataset and the US Migration Dataset.


Graph Contrastive Learning Automated

Yuning You · Tianlong Chen · Yang Shen · Zhangyang “Atlas” Wang

Self-supervised learning on graph-structured data has drawn recent interest for learning generalizable, transferable and robust representations from unlabeled graphs. Among many, graph contrastive learning (GraphCL) has emerged with promising representation learning performance. Unfortunately, unlike its counterpart on image data, the effectiveness of GraphCL hinges on ad-hoc data augmentations, which have to be manually picked per dataset, by either rules of thumb or trial-and-errors, owing to the diverse nature of graph data. That significantly limits the more general applicability of GraphCL. Aiming to fill in this crucial gap, this paper proposes a unified bi-level optimization framework to automatically, adaptively and dynamically select data augmentations when performing GraphCL on specific graph data. The general framework, dubbed JOint Augmentation Optimization (JOAO), is instantiated as min-max optimization. The selections of augmentations made by JOAO are shown to be in general aligned with previous "best practices" observed from handcrafted tuning: yet now being automated, more flexible and versatile. Moreover, we propose a new augmentation-aware projection head mechanism, which will route output features through different projection heads corresponding to different augmentations chosen at each training step. Extensive experiments demonstrate that JOAO performs on par with or sometimes better than the state-of-the-art competitors including GraphCL, on multiple graph datasets of various scales and types, yet without resorting to any laborious dataset-specific tuning on augmentation selection. We release the code at https://github.com/Shen-Lab/GraphCL_Automated.


Implicit Regularization in Tensor Factorization

Noam Razin · Asaf Maman · Nadav Cohen

Recent efforts to unravel the mystery of implicit regularization in deep learning have led to a theoretical focus on matrix factorization --- matrix completion via linear neural network. As a step further towards practical deep learning, we provide the first theoretical analysis of implicit regularization in tensor factorization --- tensor completion via certain type of non-linear neural network. We circumvent the notorious difficulty of tensor problems by adopting a dynamical systems perspective, and characterizing the evolution induced by gradient descent. The characterization suggests a form of greedy low tensor rank search, which we rigorously prove under certain conditions, and empirically demonstrate under others. Motivated by tensor rank capturing the implicit regularization of a non-linear neural network, we empirically explore it as a measure of complexity, and find that it captures the essence of datasets on which neural networks generalize. This leads us to believe that tensor rank may pave way to explaining both implicit regularization in deep learning, and the properties of real-world data translating this implicit regularization to generalization.


Efficient Training of Robust Decision Trees Against Adversarial Examples

Daniël Vos · Sicco Verwer

Current state-of-the-art algorithms for training robust decision trees have high runtime costs and require hours to run. We present GROOT, an efficient algorithm for training robust decision trees and random forests that runs in a matter of seconds to minutes. Where before the worst-case Gini impurity was computed iteratively, we find that we can solve this function analytically to improve time complexity from O(n) to O(1) in terms of n samples. Our results on both single trees and ensembles on 14 structured datasets as well as on MNIST and Fashion-MNIST demonstrate that GROOT runs several orders of magnitude faster than the state-of-the-art works and also shows better performance in terms of adversarial accuracy on structured data.


CARTL: Cooperative Adversarially-Robust Transfer Learning

Dian Chen · Hongxin Hu · Qian Wang · Li Yinli · Cong Wang · Chao Shen · Qi Li

Transfer learning eases the burden of training a well-performed model from scratch, especially when training data is scarce and computation power is limited. In deep learning, a typical strategy for transfer learning is to freeze the early layers of a pre-trained model and fine-tune the rest of its layers on the target domain. Previous work focuses on the accuracy of the transferred model but neglects the transfer of adversarial robustness. In this work, we first show that transfer learning improves the accuracy on the target domain but degrades the inherited robustness of the target model. To address such a problem, we propose a novel cooperative adversarially-robust transfer learning (CARTL) by pre-training the model via feature distance minimization and fine-tuning the pre-trained model with non-expansive fine-tuning for target domain tasks. Empirical results show that CARTL improves the inherited robustness by about 28% at most compared with the baseline with the same degree of accuracy. Furthermore, we study the relationship between the batch normalization (BN) layers and the robustness in the context of transfer learning, and we reveal that freezing BN layers can further boost the robustness transfer.


Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization

Yivan Zhang · Gang Niu · Masashi Sugiyama

Many weakly supervised classification methods employ a noise transition matrix to capture the class-conditional label corruption. To estimate the transition matrix from noisy data, existing methods often need to estimate the noisy class-posterior, which could be unreliable due to the overconfidence of neural networks. In this work, we propose a theoretically grounded method that can estimate the noise transition matrix and learn a classifier simultaneously, without relying on the error-prone noisy class-posterior estimation. Concretely, inspired by the characteristics of the stochastic label corruption process, we propose total variation regularization, which encourages the predicted probabilities to be more distinguishable from each other. Under mild assumptions, the proposed method yields a consistent estimator of the transition matrix. We show the effectiveness of the proposed method through experiments on benchmark and real-world datasets.


Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach

Federico Lopez · Beatrice Pozzetti · Steve Trettel · Michael Strube · Anna Wienhard

Learning faithful graph representations as sets of vertex embeddings has become a fundamental intermediary step in a wide range of machine learning applications. We propose the systematic use of symmetric spaces in representation learning, a class encompassing many of the previously used embedding targets. This enables us to introduce a new method, the use of Finsler metrics integrated in a Riemannian optimization scheme, that better adapts to dissimilar structures in the graph. We develop a tool to analyze the embeddings and infer structural properties of the data sets. For implementation, we choose Siegel spaces, a versatile family of symmetric spaces. Our approach outperforms competitive baselines for graph reconstruction tasks on various synthetic and real-world datasets. We further demonstrate its applicability on two downstream tasks, recommender systems and node classification.


PAPRIKA: Private Online False Discovery Rate Control

Wanrong Zhang · Gautam Kamath · Rachel Cummings

In hypothesis testing, a \emph{false discovery} occurs when a hypothesis is incorrectly rejected due to noise in the sample. When adaptively testing multiple hypotheses, the probability of a false discovery increases as more tests are performed. Thus the problem of \emph{False Discovery Rate (FDR) control} is to find a procedure for testing multiple hypotheses that accounts for this effect in determining the set of hypotheses to reject. The goal is to minimize the number (or fraction) of false discoveries, while maintaining a high true positive rate (i.e., correct discoveries). In this work, we study False Discovery Rate (FDR) control in multiple hypothesis testing under the constraint of differential privacy for the sample. Unlike previous work in this direction, we focus on the \emph{online setting}, meaning that a decision about each hypothesis must be made immediately after the test is performed, rather than waiting for the output of all tests as in the offline setting. We provide new private algorithms based on state-of-the-art results in non-private online FDR control. Our algorithms have strong provable guarantees for privacy and statistical performance as measured by FDR and power. We also provide experimental results to demonstrate the efficacy of our algorithms in a variety of data environments.


SparseBERT: Rethinking the Importance Analysis in Self-attention

Han Shi · Jiahui Gao · Xiaozhe Ren · Hang Xu · Xiaodan Liang · Zhenguo Li · James Kwok

Transformer-based models are popularly used in natural language processing (NLP). Its core component, self-attention, has aroused widespread interest. To understand the self-attention mechanism, a direct method is to visualize the attention map of a pre-trained model. Based on the patterns observed, a series of efficient Transformers with different sparse attention masks have been proposed. From a theoretical perspective, universal approximability of Transformer-based models is also recently proved. However, the above understanding and analysis of self-attention is based on a pre-trained model. To rethink the importance analysis in self-attention, we study the significance of different positions in attention matrix during pre-training. A surprising result is that diagonal elements in the attention map are the least important compared with other attention positions. We provide a proof showing that these diagonal elements can indeed be removed without deteriorating model performance. Furthermore, we propose a Differentiable Attention Mask (DAM) algorithm, which further guides the design of the SparseBERT. Extensive experiments verify our interesting findings and illustrate the effect of the proposed algorithm.


Putting the ``Learning" into Learning-Augmented Algorithms for Frequency Estimation

Elbert Du · Franklyn Wang · Michael Mitzenmacher

In learning-augmented algorithms, algorithms are enhanced using information from a machine learning algorithm. In turn, this suggests that we should tailor our machine-learning approach for the target algorithm. We here consider this synergy in the context of the learned count-min sketch from (Hsu et al., 2019). Learning here is used to predict heavy hitters from a data stream, which are counted explicitly outside the sketch. We show that an approximately sufficient statistic for the performance of the underlying count-min sketch is given by the coverage of the predictor, or the normalized $L^1$ norm of keys that are filtered by the predictor to be explicitly counted. We show that machine learning models which are trained to optimize for coverage lead to large improvements in performance over prior approaches according to the average absolute frequency error. Our source code can be found at https://github.com/franklynwang/putting-the-learning-in-LAA.


Modeling Hierarchical Structures with Continuous Recursive Neural Networks

Jishnu Ray Chowdhury · Cornelia Caragea

Recursive Neural Networks (RvNNs), which compose sequences according to their underlying hierarchical syntactic structure, have performed well in several natural language processing tasks compared to similar models without structural biases. However, traditional RvNNs are incapable of inducing the latent structure in a plain text sequence on their own. Several extensions have been proposed to overcome this limitation. Nevertheless, these extensions tend to rely on surrogate gradients or reinforcement learning at the cost of higher bias or variance. In this work, we propose Continuous Recursive Neural Network (CRvNN) as a backpropagation-friendly alternative to address the aforementioned limitations. This is done by incorporating a continuous relaxation to the induced structure. We demonstrate that CRvNN achieves strong performance in challenging synthetic tasks such as logical inference (Bowman et al., 2015b) and ListOps (Nangia & Bowman, 2018). We also show that CRvNN performs comparably or better than prior latent structure models on real-world tasks such as sentiment analysis and natural language inference.


Strategic Classification in the Dark

Ganesh Ghalme · Vineet Nair · Itay Eilat · Inbal Talgam-Cohen · Nir Rosenfeld

Strategic classification studies the interaction between a classification rule and the strategic agents it governs. Agents respond by manipulating their features, under the assumption that the classifier is known. However, in many real-life scenarios of high-stake classification (e.g., credit scoring), the classifier is not revealed to the agents, which leads agents to attempt to learn the classifier and game it too. In this paper we generalize the strategic classification model to such scenarios and analyze the effect of an unknown classifier. We define the ''price of opacity'' as the difference between the prediction error under the opaque and transparent policies, characterize it, and give a sufficient condition for it to be strictly positive, in which case transparency is the recommended policy. Our experiments show how Hardt et al.’s robust classifier is affected by keeping agents in the dark.


TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer

Berkay Berabi · Jingxuan He · Veselin Raychev · Martin Vechev

The problem of fixing errors in programs has attracted substantial interest over the years. The key challenge for building an effective code fixing tool is to capture a wide range of errors and meanwhile maintain high accuracy. In this paper, we address this challenge and present a new learning-based system, called TFix. TFix works directly on program text and phrases the problem of code fixing as a text-to-text task. In turn, this enables it to leverage a powerful Transformer based model pre-trained on natural language and fine-tuned to generate code fixes (via a large, high-quality dataset obtained from GitHub commits). TFix is not specific to a particular programming language or class of defects and, in fact, improved its precision by simultaneously fine-tuning on 52 different error types reported by a popular static analyzer. Our evaluation on a massive dataset of JavaScript programs shows that TFix is practically effective: it is able to synthesize code that fixes the error in ~67 percent of cases and significantly outperforms existing learning-based approaches.


Lower Bounds on Cross-Entropy Loss in the Presence of Test-time Adversaries

Arjun Nitin Bhagoji · Daniel Cullina · Vikash Sehwag · Prateek Mittal

Understanding the fundamental limits of robust supervised learning has emerged as a problem of immense interest, from both practical and theoretical standpoints. In particular, it is critical to determine classifier-agnostic bounds on the training loss to establish when learning is possible. In this paper, we determine optimal lower bounds on the cross-entropy loss in the presence of test-time adversaries, along with the corresponding optimal classification outputs. Our formulation of the bound as a solution to an optimization problem is general enough to encompass any loss function depending on soft classifier outputs. We also propose and provide a proof of correctness for a bespoke algorithm to compute this lower bound efficiently, allowing us to determine lower bounds for multiple practical datasets of interest. We use our lower bounds as a diagnostic tool to determine the effectiveness of current robust training methods and find a gap from optimality at larger budgets. Finally, we investigate the possibility of using of optimal classification outputs as soft labels to empirically improve robust training.


Online Limited Memory Neural-Linear Bandits with Likelihood Matching

Ofir Nabati · Tom Zahavy · Shie Mannor

We study neural-linear bandits for solving problems where {\em both} exploration and representation learning play an important role. Neural-linear bandits harnesses the representation power of Deep Neural Networks (DNNs) and combines it with efficient exploration mechanisms by leveraging uncertainty estimation of the model, designed for linear contextual bandits on top of the last hidden layer. In order to mitigate the problem of representation change during the process, new uncertainty estimations are computed using stored data from an unlimited buffer. Nevertheless, when the amount of stored data is limited, a phenomenon called catastrophic forgetting emerges. To alleviate this, we propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online. We applied our algorithm, Limited Memory Neural-Linear with Likelihood Matching (NeuralLinear-LiM2) on a variety of datasets and observed that our algorithm achieves comparable performance to the unlimited memory approach while exhibits resilience to catastrophic forgetting.


Self-Damaging Contrastive Learning

Ziyu Jiang · Tianlong Chen · Bobak Mortazavi · Zhangyang “Atlas” Wang

The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervised training on real-world data applications. However, unlabeled data in reality is commonly imbalanced and shows a long-tail distribution, and it is unclear how robustly the latest contrastive learning methods could perform in the practical scenario. This paper proposes to explicitly tackle this challenge, via a principled framework called Self-Damaging Contrastive Learning (SDCLR), to automatically balance the representation learning without knowing the classes. Our main inspiration is drawn from the recent finding that deep models have difficult-to-memorize samples, and those may be exposed through network pruning. It is further natural to hypothesize that long-tail samples are also tougher for the model to learn well due to insufficient examples. Hence, the key innovation in SDCLR is to create a dynamic self-competitor model to contrast with the target model, which is a pruned version of the latter. During training, contrasting the two models will lead to adaptive online mining of the most easily forgotten samples for the current target model, and implicitly emphasize them more in the contrastive loss. Extensive experiments across multiple datasets and imbalance settings show that SDCLR significantly improves not only overall accuracies but also balancedness, in terms of linear evaluation on the full-shot and few-shot settings. Our code is available at https://github.com/VITA-Group/SDCLR.


Aggregating From Multiple Target-Shifted Sources

Changjian Shui · Zijian Li · Jiaqi Li · Christian Gagne · Charles X. Ling · Boyu Wang

Multi-source domain adaptation aims at leveraging the knowledge from multiple tasks for predicting a related target domain. Hence, a crucial aspect is to properly combine different sources based on their relations. In this paper, we analyzed the problem for aggregating source domains with different label distributions, where most recent source selection approaches fail. Our proposed algorithm differs from previous approaches in two key ways: the model aggregates multiple sources mainly through the similarity of semantic conditional distribution rather than marginal distribution; the model proposes a unified framework to select relevant sources for three popular scenarios, i.e., domain adaptation with limited label on target domain, unsupervised domain adaptation and label partial unsupervised domain adaption. We evaluate the proposed method through extensive experiments. The empirical results significantly outperform the baselines.


BasisDeVAE: Interpretable Simultaneous Dimensionality Reduction and Feature-Level Clustering with Derivative-Based Variational Autoencoders

Dominic Danks · Christopher Yau

The Variational Autoencoder (VAE) performs effective nonlinear dimensionality reduction in a variety of problem settings. However, the black-box neural network decoder function typically employed limits the ability of the decoder function to be constrained and interpreted, making the use of VAEs problematic in settings where prior knowledge should be embedded within the decoder. We present DeVAE, a novel VAE-based model with a derivative-based forward mapping, allowing for greater control over decoder behaviour via specification of the decoder function in derivative space. Additionally, we show how DeVAE can be paired with a sparse clustering prior to create BasisDeVAE and perform interpretable simultaneous dimensionality reduction and feature-level clustering. We demonstrate the performance and scalability of the DeVAE and BasisDeVAE models on synthetic and real-world data and present how the derivative-based approach allows for expressive yet interpretable forward models which respect prior knowledge.


Implicit Bias of Linear RNNs

Melikasadat Emami · Mojtaba Sahraee-Ardakan · Parthe Pandit · Sundeep Rangan · Alyson Fletcher

Contemporary wisdom based on empirical studies suggests that standard recurrent neural networks (RNNs) do not perform well on tasks requiring long-term memory. However, RNNs' poor ability to capture long-term dependencies has not been fully understood. This paper provides a rigorous explanation of this property in the special case of linear RNNs. Although this work is limited to linear RNNs, even these systems have traditionally been difficult to analyze due to their non-linear parameterization. Using recently-developed kernel regime analysis, our main result shows that as the number of hidden units goes to infinity, linear RNNs learned from random initializations are functionally equivalent to a certain weighted 1D-convolutional network. Importantly, the weightings in the equivalent model cause an implicit bias to elements with smaller time lags in the convolution, and hence shorter memory. The degree of this bias depends on the variance of the transition matrix at initialization and is related to the classic exploding and vanishing gradients problem. The theory is validated with both synthetic and real data experiments.


Memory-Efficient Pipeline-Parallel DNN Training

Deepak Narayanan · Amar Phanishayee · Kaiyu Shi · Xie Chen · Matei Zaharia

Many state-of-the-art ML results have been obtained by scaling up the number of parameters in existing models. However, parameters and activations for such large models often do not fit in the memory of a single accelerator device; this means that it is necessary to distribute training of large models over multiple accelerators. In this work, we propose PipeDream-2BW, a system that supports memory-efficient pipeline parallelism. PipeDream-2BW uses a novel pipelining and weight gradient coalescing strategy, combined with the double buffering of weights, to ensure high throughput, low memory footprint, and weight update semantics similar to data parallelism. In addition, PipeDream-2BW automatically partitions the model over the available hardware resources, while respecting hardware constraints such as memory capacities of accelerators and interconnect topologies. PipeDream-2BW can accelerate the training of large GPT and BERT language models by up to 20x with similar final model accuracy.


Characterizing Fairness Over the Set of Good Models Under Selective Labels

Amanda Coston · Ashesh Rambachan · Alexandra Chouldechova

Algorithmic risk assessments are used to inform decisions in a wide variety of high-stakes settings. Often multiple predictive models deliver similar overall performance but differ markedly in their predictions for individual cases, an empirical phenomenon known as the Rashomon Effect.'' These models may have different properties over various groups, and therefore have different predictive fairness properties. We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance, orthe set of good models.'' Our framework addresses the empirically relevant challenge of selectively labelled data in the setting where the selection decision and outcome are unconfounded given the observed data features. Our framework can be used to 1) audit for predictive bias; or 2) replace an existing model with one that has better fairness properties. We illustrate these use cases on a recidivism prediction task and a real-world credit-scoring task.


Delving into Deep Imbalanced Regression

Yuzhe Yang · Kaiwen Zha · YINGCONG CHEN · Hao Wang · Dina Katabi

Real-world data often exhibit imbalanced distributions, where certain target values have significantly fewer observations. Existing techniques for dealing with imbalanced data focus on targets with categorical indices, i.e., different classes. However, many tasks involve continuous targets, where hard boundaries between classes do not exist. We define Deep Imbalanced Regression (DIR) as learning from such imbalanced data with continuous targets, dealing with potential missing data for certain target values, and generalizing to the entire target range. Motivated by the intrinsic difference between categorical and continuous label space, we propose distribution smoothing for both labels and features, which explicitly acknowledges the effects of nearby targets, and calibrates both label and learned feature distributions. We curate and benchmark large-scale DIR datasets from common real-world tasks in computer vision, natural language processing, and healthcare domains. Extensive experiments verify the superior performance of our strategies. Our work fills the gap in benchmarks and techniques for practical imbalanced regression problems. Code and data are available at: https://github.com/YyzHarry/imbalanced-regression.


DeepReDuce: ReLU Reduction for Fast Private Inference

Nandan Kumar Jha · Zahra Ghodsi · Siddharth Garg · Brandon Reagen

The recent rise of privacy concerns has led researchers to devise methods for private neural inference---where inferences are made directly on encrypted data, never seeing inputs. The primary challenge facing private inference is that computing on encrypted data levies an impractically-high latency penalty, stemming mostly from non-linear operators like ReLU. Enabling practical and private inference requires new optimization methods that minimize network ReLU counts while preserving accuracy. This paper proposes DeepReDuce: a set of optimizations for the judicious removal of ReLUs to reduce private inference latency. The key insight is that not all ReLUs contribute equally to accuracy. We leverage this insight to drop, or remove, ReLUs from classic networks to significantly reduce inference latency and maintain high accuracy. Given a network architecture, DeepReDuce outputs a Pareto frontier of networks that tradeoff the number of ReLUs and accuracy. Compared to the state-of-the-art for private inference DeepReDuce improves accuracy and reduces ReLU count by up to 3.5% (iso-ReLU count) and 3.5x (iso-accuracy), respectively.


Temporal Difference Learning as Gradient Splitting

Rui Liu · Alex Olshevsky

Temporal difference learning with linear function approximation is a popular method to obtain a low-dimensional approximation of the value function of a policy in a Markov Decision Process. We provide an interpretation of this method in terms of a splitting of the gradient of an appropriately chosen function. As a consequence of this interpretation, convergence proofs for gradient descent can be applied almost verbatim to temporal difference learning. Beyond giving a fuller explanation of why temporal difference works, this interpretation also yields improved convergence times. We consider the setting with $1/\sqrt{T}$ step-size, where previous comparable finite-time convergence time bounds for temporal difference learning had the multiplicative factor $1/(1-\gamma)$ in front of the bound, with $\gamma$ being the discount factor. We show that a minor variation on TD learning which estimates the mean of the value function separately has a convergence time where $1/(1-\gamma)$ only multiplies an asymptotically negligible term.


DAGs with No Curl: An Efficient DAG Structure Learning Approach

Yue Yu · Tian Gao · Naiyu Yin · Qiang Ji

Recently directed acyclic graph (DAG) structure learning is formulated as a constrained continuous optimization problem with continuous acyclicity constraints and was solved iteratively through subproblem optimization. To further improve efficiency, we propose a novel learning framework to model and learn the weighted adjacency matrices in the DAG space directly. Specifically, we first show that the set of weighted adjacency matrices of DAGs are equivalent to the set of weighted gradients of graph potential functions, and one may perform structure learning by searching in this equivalent set of DAGs. To instantiate this idea, we propose a new algorithm, DAG-NoCurl, which solves the optimization problem efficiently with a two-step procedure: $1)$ first we find an initial non-acyclic solution to the optimization problem, and $2)$ then we employ the Hodge decomposition of graphs and learn an acyclic graph by projecting the non-acyclic graph to the gradient of a potential function. Experimental studies on benchmark datasets demonstrate that our method provides comparable accuracy but better efficiency than baseline DAG structure learning methods on both linear and generalized structural equation models, often by more than one order of magnitude.


Scalable Certified Segmentation via Randomized Smoothing

Marc Fischer · Maximilian Baader · Martin Vechev

We present a new certification method for image and point cloud segmentation based on randomized smoothing. The method leverages a novel scalable algorithm for prediction and certification that correctly accounts for multiple testing, necessary for ensuring statistical guarantees. The key to our approach is reliance on established multiple-testing correction mechanisms as well as the ability to abstain from classifying single pixels or points while still robustly segmenting the overall input. Our experimental evaluation on synthetic data and challenging datasets, such as Pascal Context, Cityscapes, and ShapeNet, shows that our algorithm can achieve, for the first time, competitive accuracy and certification guarantees on real-world segmentation tasks. We provide an implementation at https://github.com/eth-sri/segmentation-smoothing.


Addressing Catastrophic Forgetting in Few-Shot Problems

Pauching Yap · Hippolyt Ritter · David Barber

Neural networks are known to suffer from catastrophic forgetting when trained on sequential datasets. While there have been numerous attempts to solve this problem in large-scale supervised classification, little has been done to overcome catastrophic forgetting in few-shot classification problems. We demonstrate that the popular gradient-based model-agnostic meta-learning algorithm (MAML) indeed suffers from catastrophic forgetting and introduce a Bayesian online meta-learning framework that tackles this problem. Our framework utilises Bayesian online learning and meta-learning along with Laplace approximation and variational inference to overcome catastrophic forgetting in few-shot classification problems. The experimental evaluations demonstrate that our framework can effectively achieve this goal in comparison with various baselines. As an additional utility, we also demonstrate empirically that our framework is capable of meta-learning on sequentially arriving few-shot tasks from a stationary task distribution.


Directed Graph Embeddings in Pseudo-Riemannian Manifolds

Aaron Sim · Maciej Wiatrak · Angus Brayne · Páidí Creed · Saee Paliwal

The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.


Robust Representation Learning via Perceptual Similarity Metrics

Saeid A Taghanaki · Kristy Choi · Amir Hosein Khasahmadi · Anirudh Goyal

A fundamental challenge in artificial intelligence is learning useful representations of data that yield good performance on a downstream classification task, without overfitting to spurious input features. Extracting such task-relevant predictive information becomes particularly difficult for noisy and high-dimensional real-world data. In this work, we propose Contrastive Input Morphing (CIM), a representation learning framework that learns input-space transformations of the data to mitigate the effect of irrelevant input features on downstream performance. Our method leverages a perceptual similarity metric via a triplet loss to ensure that the transformation preserves task-relevant information. Empirically, we demonstrate the efficacy of our approach on various tasks which typically suffer from the presence of spurious correlations: classification with nuisance information, out-of-distribution generalization, and preservation of subgroup accuracies. We additionally show that CIM is complementary to other mutual information-based representation learning techniques, and demonstrate that it improves the performance of variational information bottleneck (VIB) when used in conjunction.


Neural Feature Matching in Implicit 3D Representations

Yunlu Chen · Basura Fernando · Hakan Bilen · Thomas Mensink · Efstratios Gavves

Recently, neural implicit functions have achieved impressive results for encoding 3D shapes. Conditioning on low-dimensional latent codes generalises a single implicit function to learn shared representation space for a variety of shapes, with the advantage of smooth interpolation. While the benefits from the global latent space do not correspond to explicit points at local level, we propose to track the continuous point trajectory by matching implicit features with the latent code interpolating between shapes, from which we corroborate the hierarchical functionality of the deep implicit functions, where early layers map the latent code to fitting the coarse shape structure, and deeper layers further refine the shape details. Furthermore, the structured representation space of implicit functions enables to apply feature matching for shape deformation, with the benefits to handle topology and semantics inconsistency, such as from an armchair to a chair with no arms, without explicit flow functions or manual annotations.


Towards Practical Mean Bounds for Small Samples

My Phan · Philip Thomas · Erik Learned-Miller

Historically, to bound the mean for small sample sizes, practitioners have had to choose between using methods with unrealistic assumptions about the unknown distribution (e.g., Gaussianity) and methods like Hoeffding's inequality that use weaker assumptions but produce much looser (wider) intervals. In 1969, \citet{Anderson1969} proposed a mean confidence interval strictly better than or equal to Hoeffding's whose only assumption is that the distribution's support is contained in an interval $[a,b]$. For the first time since then, we present a new family of bounds that compares favorably to Anderson's. We prove that each bound in the family has {\em guaranteed coverage}, i.e., it holds with probability at least $1-\alpha$ for all distributions on an interval $[a,b]$. Furthermore, one of the bounds is tighter than or equal to Anderson's for all samples. In simulations, we show that for many distributions, the gain over Anderson's bound is substantial.


Quantum algorithms for reinforcement learning with a generative model

Daochen Wang · Aarthi Sundaram · Robin Kothari · Ashish Kapoor · Martin Roetteler

Reinforcement learning studies how an agent should interact with an environment to maximize its cumulative reward. A standard way to study this question abstractly is to ask how many samples an agent needs from the environment to learn an optimal policy for a $\gamma$-discounted Markov decision process (MDP). For such an MDP, we design quantum algorithms that approximate an optimal policy ($\pi^*$), the optimal value function ($v^*$), and the optimal $Q$-function ($q^*$), assuming the algorithms can access samples from the environment in quantum superposition. This assumption is justified whenever there exists a simulator for the environment; for example, if the environment is a video game or some other program. Our quantum algorithms, inspired by value iteration, achieve quadratic speedups over the best-possible classical sample complexities in the approximation accuracy ($\epsilon$) and two main parameters of the MDP: the effective time horizon ($\frac{1}{1-\gamma}$) and the size of the action space ($A$). Moreover, we show that our quantum algorithm for computing $q^*$ is optimal by proving a matching quantum lower bound.


First-Order Methods for Wasserstein Distributionally Robust MDP

Julien Grand-Clement · Christian Kroer

Markov decision processes (MDPs) are known to be sensitive to parameter specification. Distributionally robust MDPs alleviate this issue by allowing for \textit{ambiguity sets} which give a set of possible distributions over parameter sets. The goal is to find an optimal policy with respect to the worst-case parameter distribution. We propose a framework for solving Distributionally robust MDPs via first-order methods, and instantiate it for several types of Wasserstein ambiguity sets. By developing efficient proximal updates, our algorithms achieve a convergence rate of $O\left(NA^{2.5}S^{3.5}\log(S)\log(\epsilon^{-1})\epsilon^{-1.5} \right)$ for the number of kernels $N$ in the support of the nominal distribution, states $S$, and actions $A$; this rate varies slightly based on the Wasserstein setup. Our dependence on $N,A$ and $S$ is significantly better than existing methods, which have a complexity of $O\left(N^{3.5}A^{3.5}S^{4.5}\log^{2}(\epsilon^{-1}) \right)$. Numerical experiments show that our algorithm is significantly more scalable than state-of-the-art approaches across several domains.


Near-Optimal Algorithms for Explainable k-Medians and k-Means

Konstantin Makarychev · Liren Shan

We consider the problem of explainable $k$-medians and $k$-means introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian~(ICML 2020). In this problem, our goal is to find a \emph{threshold decision tree} that partitions data into $k$ clusters and minimizes the $k$-medians or $k$-means objective. The obtained clustering is easy to interpret because every decision node of a threshold tree splits data based on a single feature into two groups. We propose a new algorithm for this problem which is $\tilde O(\log k)$ competitive with $k$-medians with $\ell_1$ norm and $\tilde O(k)$ competitive with $k$-means. This is an improvement over the previous guarantees of $O(k)$ and $O(k^2)$ by Dasgupta et al (2020). We also provide a new algorithm which is $O(\log^{\nicefrac{3}{2}} k)$ competitive for $k$-medians with $\ell_2$ norm. Our first algorithm is near-optimal: Dasgupta et al (2020) showed a lower bound of $\Omega(\log k)$ for $k$-medians; in this work, we prove a lower bound of $\tilde\Omega(k)$ for $k$-means. We also provide a lower bound of $\Omega(\log k)$ for $k$-medians with $\ell_2$ norm.


Adversarial Purification with Score-based Generative Models

Jongmin Yoon · Sung Ju Hwang · Juho Lee

While adversarial training is considered as a standard defense method against adversarial attacks for image classifiers, adversarial purification, which purifies attacked images into clean images with a standalone purification, model has shown promises as an alternative defense method. Recently, an EBM trained with MCMC has been highlighted as a purification model, where an attacked image is purified by running a long Markov-chain using the gradients of the EBM. Yet, the practicality of the adversarial purification using an EBM remains questionable because the number of MCMC steps required for such purification is too large. In this paper, we propose a novel adversarial purification method based on an EBM trained with DSM. We show that an EBM trained with DSM can quickly purify attacked images within a few steps. We further introduce a simple yet effective randomized purification scheme that injects random noises into images before purification. This process screens the adversarial perturbations imposed on images by the random noises and brings the images to the regime where the EBM can denoise well. We show that our purification method is robust against various attacks and demonstrate its state-of-the-art performances.


Matrix Completion with Model-free Weighting

Jiayi Wang · Ka Wai Wong · Xiaojun Mao · Kwun Chuen Gary Chan

In this paper, we propose a novel method for matrix completion under general non-uniform missing structures. By controlling an upper bound of a novel balancing error, we construct weights that can actively adjust for the non-uniformity in the empirical risk without explicitly modeling the observation probabilities, and can be computed efficiently via convex optimization. The recovered matrix based on the proposed weighted empirical risk enjoys appealing theoretical guarantees. In particular, the proposed method achieves stronger guarantee than existing work in terms of the scaling with respect to the observation probabilities, under asymptotically heterogeneous missing settings (where entry-wise observation probabilities can be of different orders). These settings can be regarded as a better theoretical model of missing patterns with highly varying probabilities. We also provide a new minimax lower bound under a class of heterogeneous settings. Numerical experiments are also provided to demonstrate the effectiveness of the proposed method.


Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients

Artem Artemev · David Burt · Mark van der Wilk

We propose a lower bound on the log marginal likelihood of Gaussian process regression models that can be computed without matrix factorisation of the full kernel matrix. We show that approximate maximum likelihood learning of model parameters by maximising our lower bound retains many benefits of the sparse variational approach while reducing the bias introduced into hyperparameter learning. The basis of our bound is a more careful analysis of the log-determinant term appearing in the log marginal likelihood, as well as using the method of conjugate gradients to derive tight lower bounds on the term involving a quadratic form. Our approach is a step forward in unifying methods relying on lower bound maximisation (e.g. variational methods) and iterative approaches based on conjugate gradients for training Gaussian processes. In experiments, we show improved predictive performance with our model for a comparable amount of training time compared to other conjugate gradient based approaches.


In-Database Regression in Input Sparsity Time

Rajesh Jayaram · Alireza Samadian · David Woodruff · Peng Ye

Sketching is a powerful dimensionality reduction technique for accelerating algorithms for data analysis. A crucial step in sketching methods is to compute a subspace embedding (SE) for a large matrix $A \in \mathbb{R}^{N \times d}$. SE's are the primary tool for obtaining extremely efficient solutions for many linear-algebraic tasks, such as least squares regression and low rank approximation. Computing an SE often requires an explicit representation of $A$ and running time proportional to the size of $A$. However, if $A= T_1 \Join T_2 \Join \dots \Join T_m$ is the result of a database join query on several smaller tables $T_i \in \mathbb{R}^{n_i \times d_i}$, then this running time can be prohibitive, as $A$ itself can have as many as $O(n_1 n_2 \cdots n_m)$ rows. In this work, we design subspace embeddings for database joins which can be computed significantly faster than computing the join. For the case of a two table join $A = T_1 \Join T_2$ we give input-sparsity algorithms for computing subspace embeddings, with running time bounded by the number of non-zero entries in $T_1,T_2$. This results in input-sparsity time algorithms for high accuracy regression, significantly improving upon the running time of prior FAQ-based methods for regression. We extend our results to arbitrary joins for the ridge regression problem, also considerably improving the running time of prior methods. Empirically, we apply our method to real datasets and show that it is significantly faster than existing algorithms.


Locally Private k-Means in One Round

Alisa Chang · Badih Ghazi · Ravi Kumar · Pasin Manurangsi

We provide an approximation algorithm for k-means clustering in the \emph{one-round} (aka \emph{non-interactive}) local model of differential privacy (DP). Our algorithm achieves an approximation ratio arbitrarily close to the best \emph{non private} approximation algorithm, improving upon previously known algorithms that only guarantee large (constant) approximation ratios. Furthermore, ours is the first constant-factor approximation algorithm for k-means that requires only \emph{one} round of communication in the local DP model, positively resolving an open question of Stemmer (SODA 2020). Our algorithmic framework is quite flexible; we demonstrate this by showing that it also yields a similar near-optimal approximation algorithm in the (one-round) shuffle DP model.


Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

Seungwon Lee · Sima Behpour · Eric Eaton

Effective lifelong learning across diverse tasks requires the transfer of diverse knowledge, yet transferring irrelevant knowledge may lead to interference and catastrophic forgetting. In deep networks, transferring the appropriate granularity of knowledge is as important as the transfer mechanism, and must be driven by the relationships among tasks. We first show that the lifelong learning performance of several current deep learning architectures can be significantly improved by transfer at the appropriate layers. We then develop an expectation-maximization (EM) method to automatically select the appropriate transfer configuration and optimize the task network weights. This EM-based selective transfer is highly effective, balancing transfer performance on all tasks with avoiding catastrophic forgetting, as demonstrated on three algorithms in several lifelong object classification scenarios.


f-Domain Adversarial Learning: Theory and Algorithms

David Acuna · Guojun Zhang · Marc Law · Sanja Fidler

Unsupervised domain adaptation is used in many machine learning applications where, during training, a model has access to unlabeled data in the target domain, and a related labeled dataset. In this paper, we introduce a novel and general domain-adversarial framework. Specifically, we derive a novel generalization bound for domain adaptation that exploits a new measure of discrepancy between distributions based on a variational characterization of f-divergences. It recovers the theoretical results from Ben-David et al. (2010a) as a special case and supports divergences used in practice. Based on this bound, we derive a new algorithmic framework that introduces a key correction in the original adversarial training method of Ganin et al. (2016). We show that many regularizers and ad-hoc objectives introduced over the last years in this framework are then not required to achieve performance comparable to (if not better than) state-of-the-art domain-adversarial methods. Experimental analysis conducted on real-world natural language and computer vision datasets show that our framework outperforms existing baselines, and obtains the best results for f-divergences that were not considered previously in domain-adversarial learning.


Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks

Nezihe Merve Gürel · Xiangyu Qi · Luka Rimanic · Ce Zhang · Bo Li

Despite the great successes achieved by deep neural networks (DNNs), recent studies show that they are vulnerable against adversarial examples, which aim to mislead DNNs by adding small adversarial perturbations. Several defenses have been proposed against such attacks, while many of them have been adaptively attacked. In this work, we aim to enhance the ML robustness from a different perspective by leveraging domain knowledge: We propose a Knowledge Enhanced Machine Learning Pipeline (KEMLP) to integrate domain knowledge (i.e., logic relationships among different predictions) into a probabilistic graphical model via first-order logic rules. In particular, we develop KEMLP by integrating a diverse set of weak auxiliary models based on their logical relationships to the main DNN model that performs the target task. Theoretically, we provide convergence results and prove that, under mild conditions, the prediction of KEMLP is more robust than that of the main DNN model. Empirically, we take road sign recognition as an example and leverage the relationships between road signs and their shapes and contents as domain knowledge. We show that compared with adversarial training and other baselines, KEMLP achieves higher robustness against physical attacks, $\mathcal{L}_p$ bounded attacks, unforeseen attacks, and natural corruptions under both whitebox and blackbox settings, while still maintaining high clean accuracy.


Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Jure Zbontar · Li Jing · Ishan Misra · yann lecun · Stephane Deny

Self-supervised learning (SSL) is rapidly closing the gap with supervised methods on large computer vision benchmarks. A successful approach to SSL is to learn embeddings which are invariant to distortions of the input sample. However, a recurring issue with this approach is the existence of trivial constant solutions. Most current methods avoid such solutions by careful implementation details. We propose an objective function that naturally avoids collapse by measuring the cross-correlation matrix between the outputs of two identical networks fed with distorted versions of a sample, and making it as close to the identity matrix as possible. This causes the embedding vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors. The method is called Barlow Twins, owing to neuroscientist H. Barlow's redundancy-reduction principle applied to a pair of identical networks. Barlow Twins does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates. Intriguingly it benefits from very high-dimensional output vectors. Barlow Twins outperforms previous methods on ImageNet for semi-supervised classification in the low-data regime, and is on par with current state of the art for ImageNet classification with a linear classifier head, and for transfer tasks of classification and object detection.


Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information

Willie Neiswanger · Ke Alexander Wang · Stefano Ermon

In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations. One example is budget constrained global optimization of f, for which Bayesian optimization is a popular method. Other properties of interest include local optima, level sets, integrals, or graph-structured information induced by f. Often, we can find an algorithm A to compute the desired property, but it may require far more than T queries to execute. Given such an A, and a prior distribution over f, we refer to the problem of inferring the output of A using T evaluations as Bayesian Algorithm Execution (BAX). To tackle this problem, we present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output. Applying this to Dijkstra’s algorithm, for instance, we infer shortest paths in synthetic and real-world graphs with black-box edge costs. Using evolution strategies, we yield variants of Bayesian optimization that target local, rather than global, optima. On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm. Our method is closely connected to other Bayesian optimal experimental design procedures such as entropy search methods and optimal sensor placement using Gaussian processes.


Adversarial Robustness Guarantees for Random Deep Neural Networks

Giacomo De Palma · Bobak T Kiani · Seth Lloyd

The reliability of deep learning algorithms is fundamentally challenged by the existence of adversarial examples, which are incorrectly classified inputs that are extremely close to a correctly classified input. We explore the properties of adversarial examples for deep neural networks with random weights and biases, and prove that for any p≥1, the ℓ^p distance of any given input from the classification boundary scales as one over the square root of the dimension of the input times the ℓ^p norm of the input. The results are based on the recently proved equivalence between Gaussian processes and deep neural networks in the limit of infinite width of the hidden layers, and are validated with experiments on both random deep neural networks and deep neural networks trained on the MNIST and CIFAR10 datasets. The results constitute a fundamental advance in the theoretical understanding of adversarial examples, and open the way to a thorough theoretical characterization of the relation between network architecture and robustness to adversarial perturbations.


Dash: Semi-Supervised Learning with Dynamic Thresholding

Yi Xu · Lei Shang · Jinxing Ye · Qi Qian · Yu-Feng Li · Baigui Sun · Hao Li · rong jin

While semi-supervised learning (SSL) has received tremendous attentions in many machine learning tasks due to its successful use of unlabeled data, existing SSL algorithms use either all unlabeled examples or the unlabeled examples with a fixed high-confidence prediction during the training progress. However, it is possible that too many correct/wrong pseudo labeled examples are eliminated/selected. In this work we develop a simple yet powerful framework, whose key idea is to select a subset of training examples from the unlabeled data when performing existing SSL methods so that only the unlabeled examples with pseudo labels related to the labeled data will be used to train models. The selection is performed at each updating iteration by only keeping the examples whose losses are smaller than a given threshold that is dynamically adjusted through the iteration. Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection and its theoretical guarantee. Specifically, we theoretically establish the convergence rate of Dash from the view of non-convex optimization. Finally, we empirically demonstrate the effectiveness of the proposed method in comparison with state-of-the-art over benchmarks.


Accuracy, Interpretability, and Differential Privacy via Explainable Boosting

Harsha Nori · Rich Caruana · Zhiqi Bu · Judy Hanwen Shen · Janardhan Kulkarni

We show that adding differential privacy to Explainable Boosting Machines (EBMs), a recent method for training interpretable ML models, yields state-of-the-art accuracy while protecting privacy. Our experiments on multiple classification and regression datasets show that DP-EBM models suffer surprisingly little accuracy loss even with strong differential privacy guarantees. In addition to high accuracy, two other benefits of applying DP to EBMs are: a) trained models provide exact global and local interpretability, which is often important in settings where differential privacy is needed; and b) the models can be edited after training without loss of privacy to correct errors which DP noise may have introduced.


DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs

Vincent Plassier · Maxime Vono · Alain Durmus · Eric Moulines

Performing reliable Bayesian inference on a big data scale is becoming a keystone in the modern era of machine learning. A workhorse class of methods to achieve this task are Markov chain Monte Carlo (MCMC) algorithms and their design to handle distributed datasets has been the subject of many works. However, existing methods are not completely either reliable or computationally efficient. In this paper, we propose to fill this gap in the case where the dataset is partitioned and stored on computing nodes within a cluster under a master/slaves architecture. We derive a user-friendly centralised distributed MCMC algorithm with provable scaling in high-dimensional settings. We illustrate the relevance of the proposed methodology on both synthetic and real data experiments.


Skew Orthogonal Convolutions

Sahil Singla · Soheil Feizi

Training convolutional neural networks with a Lipschitz constraint under the $l_{2}$ norm is useful for provable adversarial robustness, interpretable gradients, stable training, etc. While 1-Lipschitz networks can be designed by imposing a 1-Lipschitz constraint on each layer, training such networks requires each layer to be gradient norm preserving (GNP) to prevent gradients from vanishing. However, existing GNP convolutions suffer from slow training, lead to significant reduction in accuracy and provide no guarantees on their approximations. In this work, we propose a GNP convolution layer called \textbf{S}kew \textbf{O}rthogonal \textbf{C}onvolution (SOC) that uses the following mathematical property: when a matrix is {\it Skew-Symmetric}, its exponential function is an {\it orthogonal} matrix. To use this property, we first construct a convolution filter whose Jacobian is Skew-Symmetric. Then, we use the Taylor series expansion of the Jacobian exponential to construct the SOC layer that is orthogonal. To efficiently implement SOC, we keep a finite number of terms from the Taylor series and provide a provable guarantee on the approximation error. Our experiments on CIFAR-10 and CIFAR-100 show that SOC allows us to train provably Lipschitz, large convolutional neural networks significantly faster than prior works while achieving significant improvements for both standard and certified robust accuracies.


Enhancing Robustness of Neural Networks through Fourier Stabilization

Netanel Raviv · Aidan Kelley · Minzhe Guo · Yevgeniy Vorobeychik

Despite the considerable success of neural networks in security settings such as malware detection, such models have proved vulnerable to evasion attacks, in which attackers make slight changes to inputs (e.g., malware) to bypass detection. We propose a novel approach, Fourier stabilization, for designing evasion-robust neural networks with binary inputs. This approach, which is complementary to other forms of defense, replaces the weights of individual neurons with robust analogs derived using Fourier analytic tools. The choice of which neurons to stabilize in a neural network is then a combinatorial optimization problem, and we propose several methods for approximately solving it. We provide a formal bound on the per-neuron drop in accuracy due to Fourier stabilization, and experimentally demonstrate the effectiveness of the proposed approach in boosting robustness of neural networks in several detection settings. Moreover, we show that our approach effectively composes with adversarial training.


Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels

Eran Malach · Pritish Kamath · Emmanuel Abbe · Nati Srebro

We study the relative power of learning with gradient descent on differentiable models, such as neural networks, versus using the corresponding tangent kernels. We show that under certain conditions, gradient descent achieves small error only if a related tangent kernel method achieves a non-trivial advantage over random guessing (a.k.a. weak learning), though this advantage might be very small even when gradient descent can achieve arbitrarily high accuracy. Complementing this, we show that without these conditions, gradient descent can in fact learn with small error even when no kernel method, in particular using the tangent kernel, can achieve a non-trivial advantage over random guessing.


Training Adversarially Robust Sparse Networks via Bayesian Connectivity Sampling

Ozan Özdenizci · Robert Legenstein

Deep neural networks have been shown to be susceptible to adversarial attacks. This lack of adversarial robustness is even more pronounced when models are compressed in order to meet hardware limitations. Hence, if adversarial robustness is an issue, training of sparsely connected networks necessitates considering adversarially robust sparse learning. Motivated by the efficient and stable computational function of the brain in the presence of a highly dynamic synaptic connectivity structure, we propose an intrinsically sparse rewiring approach to train neural networks with state-of-the-art robust learning objectives under high sparsity. Importantly, in contrast to previously proposed pruning techniques, our approach satisfies global connectivity constraints throughout robust optimization, i.e., it does not require dense pre-training followed by pruning. Based on a Bayesian posterior sampling principle, a network rewiring process simultaneously learns the sparse connectivity structure and the robustness-accuracy trade-off based on the adversarial learning objective. Although our networks are sparsely connected throughout the whole training process, our experimental benchmark evaluations show that their performance is superior to recently proposed robustness-aware network pruning methods which start from densely connected networks.


Confidence Scores Make Instance-dependent Label-noise Learning Possible

Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama

In learning with noisy labels, for every instance, its label can randomly walk to other classes following a transition distribution which is named a noise model. Well-studied noise models are all instance-independent, namely, the transition depends only on the original label but not the instance itself, and thus they are less practical in the wild. Fortunately, methods based on instance-dependent noise have been studied, but most of them have to rely on strong assumptions on the noise models. To alleviate this issue, we introduce confidence-scored instance-dependent noise (CSIDN), where each instance-label pair is equipped with a confidence score. We find that with the help of confidence scores, the transition distribution of each instance can be approximately estimated. Similarly to the powerful forward correction for instance-independent noise, we propose a novel instance-level forward correction for CSIDN. We demonstrate the utility and effectiveness of our method through multiple experiments on datasets with synthetic label noise and real-world unknown noise.


Learning Interaction Kernels for Agent Systems on Riemannian Manifolds

Mauro Maggioni · Jason Miller · Hongda Qiu · Ming Zhong

Interacting agent and particle systems are extensively used to model complex phenomena in science and engineering. We consider the problem of learning interaction kernels in these dynamical systems constrained to evolve on Riemannian manifolds from given trajectory data. The models we consider are based on interaction kernels depending on pairwise Riemannian distances between agents, with agents interacting locally along the direction of the shortest geodesic connecting them. We show that our estimators converge at a rate that is independent of the dimension of the state space, and derive bounds on the trajectory estimation error, on the manifold, between the observed and estimated dynamics. We demonstrate the performance of our estimator on two classical first order interacting systems: Opinion Dynamics and a Predator-Swarm system, with each system constrained on two prototypical manifolds, the $2$-dimensional sphere and the Poincar\'e disk model of hyperbolic space.


EL-Attention: Memory Efficient Lossless Attention for Generation

Yu Yan · Jiusheng Chen · Weizhen Qi · Nikhil Bhendawade · Yeyun Gong · Nan Duan · Ruofei Zhang

Transformer model with multi-head attention requires caching intermediate results for efficient inference in generation tasks. However, cache brings new memory-related costs and prevents leveraging larger batch size for faster speed. We propose memory-efficient lossless attention (called EL-attention) to address this issue. It avoids heavy operations for building multi-head keys and values, cache for them is not needed. EL-attention constructs an ensemble of attention results by expanding query while keeping key and value shared. It produces the same result as multi-head attention with less GPU memory and faster inference speed. We conduct extensive experiments on Transformer, BART, and GPT-2 for summarization and question generation tasks. The results show EL-attention speeds up existing models by 1.6x to 5.3x without accuracy loss.


Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

Yujia Bao · Shiyu Chang · Regina Barzilay

We propose Predict then Interpolate (PI), a simple algorithm for learning correlations that are stable across environments. The algorithm follows from the intuition that when using a classifier trained on one environment to make predictions on examples from another environment, its mistakes are informative as to which correlations are unstable. In this work, we prove that by interpolating the distributions of the correct predictions and the wrong predictions, we can uncover an oracle distribution where the unstable correlation vanishes. Since the oracle interpolation coefficients are not accessible, we use group distributionally robust optimization to minimize the worst-case risk across all such interpolations. We evaluate our method on both text classification and image classification. Empirical results demonstrate that our algorithm is able to learn robust classifiers (outperforms IRM by 23.85% on synthetic environments and 12.41% on natural environments). Our code and data are available at https://github.com/YujiaBao/ Predict-then-Interpolate.


Differentially Private Query Release Through Adaptive Projection

Sergul Aydore · William Brown · Michael Kearns · Krishnaram Kenthapadi · Luca Melis · Aaron Roth · Ankit Siva

We propose, implement, and evaluate a new algo-rithm for releasing answers to very large numbersof statistical queries likek-way marginals, sub-ject to differential privacy. Our algorithm makesadaptive use of a continuous relaxation of thePro-jection Mechanism, which answers queries on theprivate dataset using simple perturbation, and thenattempts to find the synthetic dataset that mostclosely matches the noisy answers. We use a con-tinuous relaxation of the synthetic dataset domainwhich makes the projection loss differentiable,and allows us to use efficient ML optimizationtechniques and tooling. Rather than answering allqueries up front, we make judicious use of ourprivacy budget by iteratively finding queries forwhich our (relaxed) synthetic data has high error,and then repeating the projection. Randomizedrounding allows us to obtain synthetic data in theoriginal schema. We perform experimental evalu-ations across a range of parameters and datasets,and find that our method outperforms existingalgorithms on large query classes.


Learning Binary Decision Trees by Argmin Differentiation

Valentina Zantedeschi · Matt J. Kusner · Vlad Niculae

We address the problem of learning binary decision trees that partition data for some downstream task. We propose to learn discrete parameters (i.e., for tree traversals and node pruning) and continuous parameters (i.e., for tree split functions and prediction functions) simultaneously using argmin differentiation. We do so by sparsely relaxing a mixed-integer program for the discrete parameters, to allow gradients to pass through the program to continuous parameters. We derive customized algorithms to efficiently compute the forward and backward passes. This means that our tree learning procedure can be used as an (implicit) layer in arbitrary deep networks, and can be optimized with arbitrary loss functions. We demonstrate that our approach produces binary trees that are competitive with existing single tree and ensemble approaches, in both supervised and unsupervised settings. Further, apart from greedy approaches (which do not have competitive accuracies), our method is faster to train than all other tree-learning baselines we compare with.


SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

Alexander Wang · Mengye Ren · Richard Zemel

Sketch drawings capture the salient information of visual concepts. Previous work has shown that neural networks are capable of producing sketches of natural objects drawn from a small number of classes. While earlier approaches focus on generation quality or retrieval, we explore properties of image representations learned by training a model to produce sketches of images. We show that this generative, class-agnostic model produces informative embeddings of images from novel examples, classes, and even novel datasets in a few-shot setting. Additionally, we find that these learned representations exhibit interesting structure and compositionality.


On the Power of Localized Perceptron for Label-Optimal Learning of Halfspaces with Adversarial Noise

Jie Shen

We study {\em online} active learning of homogeneous halfspaces in $\mathbb{R}^d$ with adversarial noise where the overall probability of a noisy label is constrained to be at most $\nu$. Our main contribution is a Perceptron-like online active learning algorithm that runs in polynomial time, and under the conditions that the marginal distribution is isotropic log-concave and $\nu = \Omega(\epsilon)$, where $\epsilon \in (0, 1)$ is the target error rate, our algorithm PAC learns the underlying halfspace with near-optimal label complexity of $\tilde{O}\big(d \cdot \polylog(\frac{1}{\epsilon})\big)$ and sample complexity of $\tilde{O}\big(\frac{d}{\epsilon} \big)$. Prior to this work, existing online algorithms designed for tolerating the adversarial noise are subject to either label complexity polynomial in $\frac{1}{\epsilon}$, or suboptimal noise tolerance, or restrictive marginal distributions. With the additional prior knowledge that the underlying halfspace is $s$-sparse, we obtain attribute-efficient label complexity of $\tilde{O}\big( s \cdot \polylog(d, \frac{1}{\epsilon}) \big)$ and sample complexity of $\tilde{O}\big(\frac{s}{\epsilon} \cdot \polylog(d) \big)$. As an immediate corollary, we show that under the agnostic model where no assumption is made on the noise rate $\nu$, our active learner achieves an error rate of $O(OPT) + \epsilon$ with the same running time and label and sample complexity, where $OPT$ is the best possible error rate achievable by any homogeneous halfspace.


Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning

Yann Fraboni · Richard Vidal · Laetitia Kameni · Marco Lorenzi

This work addresses the problem of optimizing communications between server and clients in federated learning (FL). Current sampling approaches in FL are either biased, or non optimal in terms of server-clients communications and training stability. To overcome this issue, we introduce clustered sampling for clients selection. We prove that clustered sampling leads to better clients representatitivity and to reduced variance of the clients stochastic aggregation weights in FL. Compatibly with our theory, we provide two different clustering approaches enabling clients aggregation based on 1) sample size, and 2) models similarity. Through a series of experiments in non-iid and unbalanced scenarios, we demonstrate that model aggregation through clustered sampling consistently leads to better training convergence and variability when compared to standard sampling approaches. Our approach does not require any additional operation on the clients side, and can be seamlessly integrated in standard FL implementations. Finally, clustered sampling is compatible with existing methods and technologies for privacy enhancement, and for communication reduction through model compression.


Sinkhorn Label Allocation: Semi-Supervised Classification via Annealed Self-Training

Kai Sheng Tai · Peter Bailis · Gregory Valiant

Self-training is a standard approach to semi-supervised learning where the learner's own predictions on unlabeled data are used as supervision during training. In this paper, we reinterpret this label assignment process as an optimal transportation problem between examples and classes, wherein the cost of assigning an example to a class is mediated by the current predictions of the classifier. This formulation facilitates a practical annealing strategy for label assignment and allows for the inclusion of prior knowledge on class proportions via flexible upper bound constraints. The solutions to these assignment problems can be efficiently approximated using Sinkhorn iteration, thus enabling their use in the inner loop of standard stochastic optimization algorithms. We demonstrate the effectiveness of our algorithm on the CIFAR-10, CIFAR-100, and SVHN datasets in comparison with FixMatch, a state-of-the-art self-training algorithm.


HAWQ-V3: Dyadic Neural Network Quantization

Zhewei Yao · Zhen Dong · Zhangcheng Zheng · Amir Gholaminejad · Jiali Yu · Eric Tan · Leyuan Wang · Qijing Huang · Yida Wang · Michael Mahoney · EECS Kurt Keutzer

Current low-precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to quantized integer values. This hidden cost limits the latency improvement realized by quantizing Neural Networks. To address this, we present HAWQ-V3, a novel mixed-precision integer-only quantization framework. The contributions of HAWQ-V3 are the following: (i) An integer-only inference where the entire computational graph is performed only with integer multiplication, addition, and bit shifting, without any floating point operations or even integer division; (ii) A novel hardware-aware mixed-precision quantization method where the bit-precision is calculated by solving an integer linear programming problem that balances the trade-off between model perturbation and other constraints, e.g., memory footprint and latency; (iii) Direct hardware deployment and open source contribution for 4-bit uniform/mixed-precision quantization in TVM, achieving an average speed up of 1.45x for uniform 4-bit, as compared to uniform 8-bit for ResNet50 on T4 GPUs; and (iv) extensive evaluation of the proposed methods on ResNet18/50 and InceptionV3, for various model compression levels with/without mixed precision. For ResNet50, our INT8 quantization achieves an accuracy of 77.58%, which is 2.68% higher than prior integer-only work, and our mixed-precision INT4/8 quantization can reduce INT8 latency by 23% and still achieve 76.73% accuracy. Our framework and the TVM implementation have been open sourced (HAWQ, 2020).


Pointwise Binary Classification with Pairwise Confidence Comparisons

Lei Feng · Senlin Shu · Nan Lu · Bo Han · Miao Xu · Gang Niu · Bo An · Masashi Sugiyama

To alleviate the data requirement for training effective binary classifiers in binary classification, many weakly supervised learning settings have been proposed. Among them, some consider using pairwise but not pointwise labels, when pointwise labels are not accessible due to privacy, confidentiality, or security reasons. However, as a pairwise label denotes whether or not two data points share a pointwise label, it cannot be easily collected if either point is equally likely to be positive or negative. Thus, in this paper, we propose a novel setting called pairwise comparison (Pcomp) classification, where we have only pairs of unlabeled data that we know one is more likely to be positive than the other. Firstly, we give a Pcomp data generation process, derive an unbiased risk estimator (URE) with theoretical guarantee, and further improve URE using correction functions. Secondly, we link Pcomp classification to noisy-label learning to develop a progressive URE and improve it by imposing consistency regularization. Finally, we demonstrate by experiments the effectiveness of our methods, which suggests Pcomp is a valuable and practically useful type of pairwise supervision besides the pairwise label.


PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

Chaoyang He · Shen Li · Mahdi Soltanolkotabi · Salman Avestimehr

The size of Transformer models is growing at an unprecedented rate. It has taken less than one year to reach trillion-level parameters since the release of GPT-3 (175B). Training such models requires both substantial engineering efforts and enormous computing resources, which are luxuries most research teams cannot afford. In this paper, we propose PipeTransformer, which leverages automated elastic pipelining for efficient distributed training of Transformer models. In PipeTransformer, we design an adaptive on the fly freeze algorithm that can identify and freeze some layers gradually during training, and an elastic pipelining system that can dynamically allocate resources to train the remaining active layers. More specifically, PipeTransformer automatically excludes frozen layers from the pipeline, packs active layers into fewer GPUs, and forks more replicas to increase data-parallel width. We evaluate PipeTransformer using Vision Transformer (ViT) on ImageNet and BERT on SQuAD and GLUE datasets. Our results show that compared to the state-of-the-art baseline, PipeTransformer attains up to 2.83-fold speedup without losing accuracy. We also provide various performance analyses for a more comprehensive understanding of our algorithmic and system-wise design. Finally, we have modularized our training system with flexible APIs and made the source code publicly available at https://DistML.ai.


On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients

Difan Zou · Quanquan Gu

Hamiltonian Monte Carlo (HMC), built based on the Hamilton's equation, has been witnessed great success in sampling from high-dimensional posterior distributions. However, it also suffers from computational inefficiency, especially for large training datasets. One common idea to overcome this computational bottleneck is using stochastic gradients, which only queries a mini-batch of training data in each iteration. However, unlike the extensive studies on the convergence analysis of HMC using full gradients, few works focus on establishing the convergence guarantees of stochastic gradient HMC algorithms. In this paper, we propose a general framework for proving the convergence rate of HMC with stochastic gradient estimators, for sampling from strongly log-concave and log-smooth target distributions. We show that the convergence to the target distribution in $2$-Wasserstein distance can be guaranteed as long as the stochastic gradient estimator is unbiased and its variance is upper bounded along the algorithm trajectory. We further apply the proposed framework to analyze the convergence rates of HMC with four standard stochastic gradient estimators: mini-batch stochastic gradient (SG), stochastic variance reduced gradient (SVRG), stochastic average gradient (SAGA), and control variate gradient (CVG). Theoretical results explain the inefficiency of mini-batch SG, and suggest that SVRG and SAGA perform better in the tasks with high-precision requirements, while CVG performs better for large dataset. Experiment results verify our theoretical findings.


Training data-efficient image transformers & distillation through attention

Hugo Touvron · Matthieu Cord · Douze Matthijs · Francisco Massa · Alexandre Sablayrolles · Herve Jegou

Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. These high-performing vision transformers are pre-trained with hundreds of millions of images using a large infrastructure, thereby limiting their adoption.

In this work, we produce competitive convolution-free transformers trained on ImageNet only using a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop) on ImageNet with no external data.

We also introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention, typically from a convnet teacher. The learned transformers are competitive (85.2% top-1 acc.) with the state of the art on ImageNet, and similarly when transferred to other tasks. We will share our code and models.


Uniform Convergence, Adversarial Spheres and a Simple Remedy

Gregor Bachmann · Seyed Moosavi · Thomas Hofmann

Previous work has cast doubt on the general framework of uniform convergence and its ability to explain generalization in neural networks. By considering a specific dataset, it was observed that a neural network completely misclassifies a projection of the training data (adversarial set), rendering any existing generalization bound based on uniform convergence vacuous. We provide an extensive theoretical investigation of the previously studied data setting through the lens of infinitely-wide models. We prove that the Neural Tangent Kernel (NTK) also suffers from the same phenomenon and we uncover its origin. We highlight the important role of the output bias and show theoretically as well as empirically how a sensible choice completely mitigates the problem. We identify sharp phase transitions in the accuracy on the adversarial set and study its dependency on the training sample size. As a result, we are able to characterize critical sample sizes beyond which the effect disappears. Moreover, we study decompositions of a neural network into a clean and noisy part by considering its canonical decomposition into its different eigenfunctions and show empirically that for too small bias the adversarial phenomenon still persists.


Oblivious Sketching for Logistic Regression

Alexander Munteanu · Simon Omlor · David Woodruff

What guarantees are possible for solving logistic regression in one pass over a data stream? To answer this question, we present the first data oblivious sketch for logistic regression. Our sketch can be computed in input sparsity time over a turnstile data stream and reduces the size of a $d$-dimensional data set from $n$ to only $\operatorname{poly}(\mu d\log n)$ weighted points, where $\mu$ is a useful parameter which captures the complexity of compressing the data. Solving (weighted) logistic regression on the sketch gives an $O(\log n)$-approximation to the original problem on the full data set. We also show how to obtain an $O(1)$-approximation with slight modifications. Our sketches are fast, simple, easy to implement, and our experiments demonstrate their practicality.


Directional Bias Amplification

Angelina Wang · Olga Russakovsky

Mitigating bias in machine learning systems requires refining our understanding of bias propagation pathways: from societal structures to large-scale data to trained models to impact on society. In this work, we focus on one aspect of the problem, namely bias amplification: the tendency of models to amplify the biases present in the data they are trained on. A metric for measuring bias amplification was introduced in the seminal work by Zhao et al. (2017); however, as we demonstrate, this metric suffers from a number of shortcomings including conflating different types of bias amplification and failing to account for varying base rates of protected attributes. We introduce and analyze a new, decoupled metric for measuring bias amplification, $BiasAmp_{\rightarrow}$ (Directional Bias Amplification). We thoroughly analyze and discuss both the technical assumptions and normative implications of this metric. We provide suggestions about its measurement by cautioning against predicting sensitive attributes, encouraging the use of confidence intervals due to fluctuations in the fairness of models across runs, and discussing the limitations of what this metric captures. Throughout this paper, we work to provide an interrogative look at the technical measurement of bias amplification, guided by our normative ideas of what we want it to encompass. Code is located at https://github.com/princetonvisualai/directional-bias-amp.


Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels

Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu

Learning with noisy labels has attracted a lot of attention in recent years, where the mainstream approaches are in \emph{pointwise} manners. Meanwhile, \emph{pairwise} manners have shown great potential in supervised metric learning and unsupervised contrastive learning. Thus, a natural question is raised: does learning in a pairwise manner \emph{mitigate} label noise? To give an affirmative answer, in this paper, we propose a framework called \emph{Class2Simi}: it transforms data points with noisy \emph{class labels} to data pairs with noisy \emph{similarity labels}, where a similarity label denotes whether a pair shares the class label or not. Through this transformation, the \emph{reduction of the noise rate} is theoretically guaranteed, and hence it is in principle easier to handle noisy similarity labels. Amazingly, DNNs that predict the \emph{clean} class labels can be trained from noisy data pairs if they are first pretrained from noisy data points. Class2Simi is \emph{computationally efficient} because not only this transformation is on-the-fly in mini-batches, but also it just changes loss computation on top of model prediction into a pairwise manner. Its effectiveness is verified by extensive experiments.


I-BERT: Integer-only BERT Quantization

Sehoon Kim · Amir Gholaminejad · Zhewei Yao · Michael Mahoney · EECS Kurt Keutzer

Transformer based models, like BERT and RoBERTa, have achieved state-of-the-art results in many Natural Language Processing tasks. However, their memory footprint, inference latency, and power consumption are prohibitive efficient inference at the edge, and even at the data center. While quantization can be a viable solution for this, previous work on quantizing Transformer based models use floating-point arithmetic during inference, which cannot efficiently utilize integer-only logical units such as the recent Turing Tensor Cores, or traditional integer-only ARM processors. In this work, we propose I-BERT, a novel quantization scheme for Transformer based models that quantizes the entire inference with integer-only arithmetic. Based on lightweight integer-only approximation methods for nonlinear operations, e.g., GELU, Softmax, and Layer Normalization, I-BERT performs an end-to-end integer-only BERT inference without any floating point calculation. We evaluate our approach on GLUE downstream tasks using RoBERTa-Base/Large. We show that for both cases, I-BERT achieves similar (and slightly higher) accuracy as compared to the full-precision baseline. Furthermore, our preliminary implementation of I-BERT shows a speedup of 2.4- 4.0x for INT8 inference on a T4 GPU system as compared to FP32 inference. The framework has been developed in PyTorch and has been open-sourced.


Matrix Sketching for Secure Collaborative Machine Learning

Mengjiao Zhang · Shusen Wang

Collaborative learning allows participants to jointly train a model without data sharing. To update the model parameters, the central server broadcasts model parameters to the clients, and the clients send updating directions such as gradients to the server. While data do not leave a client device, the communicated gradients and parameters will leak a client's privacy. Attacks that infer clients' privacy from gradients and parameters have been developed by prior work. Simple defenses such as dropout and differential privacy either fail to defend the attacks or seriously hurt test accuracy. We propose a practical defense which we call Double-Blind Collaborative Learning (DBCL). The high-level idea is to apply random matrix sketching to the parameters (aka weights) and re-generate random sketching after each iteration. DBCL prevents clients from conducting gradient-based privacy inferences which are the most effective attacks. DBCL works because from the attacker's perspective, sketching is effectively random noise that outweighs the signal. Notably, DBCL does not much increase computation and communication costs and does not hurt test accuracy at all.


Annealed Flow Transport Monte Carlo

Michael Arbel · Alexander Matthews · Arnaud Doucet

Annealed Importance Sampling (AIS) and its Sequential Monte Carlo (SMC) extensions are state-of-the-art methods for estimating normalizing constants of probability distributions. We propose here a novel Monte Carlo algorithm, Annealed Flow Transport (AFT), that builds upon AIS and SMC and combines them with normalizing flows (NFs) for improved performance. This method transports a set of particles using not only importance sampling (IS), Markov chain Monte Carlo (MCMC) and resampling steps - as in SMC, but also relies on NFs which are learned sequentially to push particles towards the successive annealed targets. We provide limit theorems for the resulting Monte Carlo estimates of the normalizing constant and expectations with respect to the target distribution. Additionally, we show that a continuous-time scaling limit of the population version of AFT is given by a Feynman--Kac measure which simplifies to the law of a controlled diffusion for expressive NFs. We demonstrate experimentally the benefits and limitations of our methodology on a variety of applications.


A Discriminative Technique for Multiple-Source Adaptation

Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang

We present a new discriminative technique for the multiple-source adaptation (MSA) problem. Unlike previous work, which relies on density estimation for each source domain, our solution only requires conditional probabilities that can be straightforwardly accurately estimated from unlabeled data from the source domains. We give a detailed analysis of our new technique, including general guarantees based on R\'enyi divergences, and learning bounds when conditional Maxent is used for estimating conditional probabilities for a point to belong to a source domain. We show that these guarantees compare favorably to those that can be derived for the generative solution, using kernel density estimation. Our experiments with real-world applications further demonstrate that our new discriminative MSA algorithm outperforms the previous generative solution as well as other domain adaptation baselines.


A Collective Learning Framework to Boost GNN Expressiveness for Node Classification

Mengyue Hang · Jennifer Neville · Bruno Ribeiro

Collective Inference (CI) is a procedure designed to boost weak relational classifiers, specially for node classification tasks. Graph Neural Networks (GNNs) are strong classifiers that have been used with great success. Unfortunately, most existing practical GNNs are not most-expressive (universal). Thus, it is an open question whether one can improve strong relational node classifiers, such as GNNs, with CI. In this work, we investigate this question and propose {\em collective learning} for GNNs ---a general collective classification approach for node representation learning that increases their representation power. We show that previous attempts to incorporate CI into GNNs fail to boost their expressiveness because they do not adapt CI's Monte Carlo sampling to representation learning. We evaluate our proposed framework with a variety of state-of-the-art GNNs. Our experiments show a consistent, significant boost in node classification accuracy ---regardless of the choice of underlying GNN--- for inductive node classification in partially-labeled graphs, across five real-world network datasets.


On Disentangled Representations Learned from Correlated Data

Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer

The focus of disentanglement approaches has been on identifying independent factors of variation in data. However, the causal variables underlying real-world observations are often not statistically independent. In this work, we bridge the gap to real-world scenarios by analyzing the behavior of the most prominent disentanglement approaches on correlated data in a large-scale empirical study (including 4260 models). We show and quantify that systematically induced correlations in the dataset are being learned and reflected in the latent representations, which has implications for downstream applications of disentanglement such as fairness. We also demonstrate how to resolve these latent correlations, either using weak supervision during training or by post-hoc correcting a pre-trained model with a small number of labels.


SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data

Maud Lemercier · Cristopher Salvi · Thomas Cass · Edwin V Bonilla · Theodoros Damoulas · Terry Lyons

Making predictions and quantifying their uncertainty when the input data is sequential is a fundamental learning challenge, recently attracting increasing attention. We develop SigGPDE, a new scalable sparse variational inference framework for Gaussian Processes (GPs) on sequential data. Our contribution is twofold. First, we construct inducing variables underpinning the sparse approximation so that the resulting evidence lower bound (ELBO) does not require any matrix inversion. Second, we show that the gradients of the GP signature kernel are solutions of a hyperbolic partial differential equation (PDE). This theoretical insight allows us to build an efficient back-propagation algorithm to optimize the ELBO. We showcase the significant computational gains of SigGPDE compared to existing methods, while achieving state-of-the-art performance for classification tasks on large datasets of up to 1 million multivariate time series.


Randomized Dimensionality Reduction for Facility Location and Single-Linkage Clustering

Shyam Narayanan · Sandeep Silwal · Piotr Indyk · Or Zamir

Random dimensionality reduction is a versatile tool for speeding up algorithms for high-dimensional problems. We study its application to two clustering problems: the facility location problem, and the single-linkage hierarchical clustering problem, which is equivalent to computing the minimum spanning tree. We show that if we project the input pointset $X$ onto a random $d = O(d_X)$-dimensional subspace (where $d_X$ is the doubling dimension of $X$), then the optimum facility location cost in the projected space approximates the original cost up to a constant factor. We show an analogous statement for minimum spanning tree, but with the dimension $d$ having an extra $\log \log n$ term and the approximation factor being arbitrarily close to $1$. Furthermore, we extend these results to approximating {\em solutions} instead of just their {\em costs}. Lastly, we provide experimental results to validate the quality of solutions and the speedup due to the dimensionality reduction. Unlike several previous papers studying this approach in the context of $k$-means and $k$-medians, our dimension bound does not depend on the number of clusters but only on the intrinsic dimensionality of $X$.


Systematic Analysis of Cluster Similarity Indices: How to Validate Validation Measures

Martijn Gösgens · Aleksei Tikhonov · Liudmila Prokhorenkova

Many cluster similarity indices are used to evaluate clustering algorithms, and choosing the best one for a particular task remains an open problem. We demonstrate that this problem is crucial: there are many disagreements among the indices, these disagreements do affect which algorithms are preferred in applications, and this can lead to degraded performance in real-world systems. We propose a theoretical framework to tackle this problem: we develop a list of desirable properties and conduct an extensive theoretical analysis to verify which indices satisfy them. This allows for making an informed choice: given a particular application, one can first select properties that are desirable for the task and then identify indices satisfying these. Our work unifies and considerably extends existing attempts at analyzing cluster similarity indices: we introduce new properties, formalize existing ones, and mathematically prove or disprove each property for an extensive list of validation indices. This broader and more rigorous approach leads to recommendations that considerably differ from how validation indices are currently being chosen by practitioners. Some of the most popular indices are even shown to be dominated by previously overlooked ones.


Analyzing the tree-layer structure of Deep Forests

Ludovic Arnould · Claire Boyer · Erwan Scornet

Random forests on the one hand, and neural networks on the other hand, have met great success in the machine learning community for their predictive performance. Combinations of both have been proposed in the literature, notably leading to the so-called deep forests (DF) (Zhou & Feng,2019). In this paper, our aim is not to benchmark DF performances but to investigate instead their underlying mechanisms. Additionally, DF architecture can be generally simplified into more simple and computationally efficient shallow forest networks. Despite some instability, the latter may outperform standard predictive tree-based methods. We exhibit a theoretical framework in which a shallow tree network is shown to enhance the performance of classical decision trees. In such a setting, we provide tight theoretical lower and upper bounds on its excess risk. These theoretical results show the interest of tree-network architectures for well-structured data provided that the first layer, acting as a data encoder, is rich enough.


Fair Selective Classification Via Sufficiency

Joshua Lee · Yuheng Bu · Deepta Rajan · Prasanna Sattigeri · Rameswar Panda · Subhro Das · Gregory Wornell

Selective classification is a powerful tool for decision-making in scenarios where mistakes are costly but abstentions are allowed. In general, by allowing a classifier to abstain, one can improve the performance of a model at the cost of reducing coverage and classifying fewer samples. However, recent work has shown, in some cases, that selective classification can magnify disparities between groups, and has illustrated this phenomenon on multiple real-world datasets. We prove that the sufficiency criterion can be used to mitigate these disparities by ensuring that selective classification increases performance on all groups, and introduce a method for mitigating the disparity in precision across the entire coverage scale based on this criterion. We then provide an upper bound on the conditional mutual information between the class label and sensitive attribute, conditioned on the learned features, which can be used as a regularizer to achieve fairer selective classification. The effectiveness of the method is demonstrated on the Adult, CelebA, Civil Comments, and CheXpert datasets.


Binary Classification from Multiple Unlabeled Datasets via Surrogate Set Classification

Nan Lu · Shida Lei · Gang Niu · Issei Sato · Masashi Sugiyama

To cope with high annotation costs, training a classifier only from weakly supervised data has attracted a great deal of attention these days. Among various approaches, strengthening supervision from completely unsupervised classification is a promising direction, which typically employs class priors as the only supervision and trains a binary classifier from unlabeled (U) datasets. While existing risk-consistent methods are theoretically grounded with high flexibility, they can learn only from two U sets. In this paper, we propose a new approach for binary classification from $m$ U-sets for $m\ge2$. Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC), which is aimed at predicting from which U set each observed sample is drawn. SSC can be solved by a standard (multi-class) classification method, and we use the SSC solution to obtain the final binary classifier through a certain linear-fractional transformation. We built our method in a flexible and efficient end-to-end deep learning framework and prove it to be classifier-consistent. Through experiments, we demonstrate the superiority of our proposed method over state-of-the-art methods.


Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision

Chao Jia · Yinfei Yang · Ye Xia · Yi-Ting Chen · Zarana Parekh · Hieu Pham · Quoc Le · Yun-Hsuan Sung · Zhen Li · Tom Duerig

Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as ImageNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated cross-attention models. The representations also enable cross-modality search with complex text and text + image queries.


Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

Xin Zhao · Zeru Zhang · Zijie Zhang · Lingfei Wu · Jiayin Jin · Yang Zhou · Ruoming Jin · Dejing Dou · Da Yan

Recent findings have shown multiple graph learning models, such as graph classification and graph matching, are highly vulnerable to adversarial attacks, i.e. small input perturbations in graph structures and node attributes can cause the model failures. Existing defense techniques often defend specific attacks on particular multiple graph learning tasks. This paper proposes an attack-agnostic graph-adaptive 1-Lipschitz neural network, ERNN, for improving the robustness of deep multiple graph learning while achieving remarkable expressive power. A Kl-Lipschitz Weibull activation function is designed to enforce the gradient norm as Kl at layer l. The nearest matrix orthogonalization and polar decomposition techniques are utilized to constraint the weight norm as 1/Kl and make the norm-constrained weight close to the original weight. The theoretical analysis is conducted to derive lower and upper bounds of feasible Kl under the 1-Lipschitz constraint. The combination of norm-constrained weight and activation function leads to the 1-Lipschitz neural network for expressive and robust multiple graph learning.


Posterior Value Functions: Hindsight Baselines for Policy Gradient Methods

Chris Nota · Philip Thomas · Bruno C. da Silva

Hindsight allows reinforcement learning agents to leverage new observations to make inferences about earlier states and transitions. In this paper, we exploit the idea of hindsight and introduce posterior value functions. Posterior value functions are computed by inferring the posterior distribution over hidden components of the state in previous timesteps and can be used to construct novel unbiased baselines for policy gradient methods. Importantly, we prove that these baselines reduce (and never increase) the variance of policy gradient estimators compared to traditional state value functions. While the posterior value function is motivated by partial observability, we extend these results to arbitrary stochastic MDPs by showing that hindsight-capable agents can model stochasticity in the environment as a special case of partial observability. Finally, we introduce a pair of methods for learning posterior value functions and prove their convergence.


Nonmyopic Multifidelity Acitve Search

Quan Nguyen · Arghavan Modiri · Roman Garnett

Active search is a learning paradigm where we seek to identify as many members of a rare, valuable class as possible given a labeling budget. Previous work on active search has assumed access to a faithful (and expensive) oracle reporting experimental results. However, some settings offer access to cheaper surrogates such as computational simulation that may aid in the search. We propose a model of multifidelity active search, as well as a novel, computationally efficient policy for this setting that is motivated by state-of-the-art classical policies. Our policy is nonmyopic and budget aware, allowing for a dynamic tradeoff between exploration and exploitation. We evaluate the performance of our solution on real-world datasets and demonstrate significantly better performance than natural benchmarks.


Differentially Private Quantiles

Jennifer Gillenwater · Matthew Joseph · Alex Kulesza

Quantiles are often used for summarizing and understanding data. If that data is sensitive, it may be necessary to compute quantiles in a way that is differentially private, providing theoretical guarantees that the result does not reveal private information. However, when multiple quantiles are needed, existing differentially private algorithms fare poorly: they either compute quantiles individually, splitting the privacy budget, or summarize the entire distribution, wasting effort. In either case the result is reduced accuracy. In this work we propose an instance of the exponential mechanism that simultaneously estimates exactly $m$ quantiles from $n$ data points while guaranteeing differential privacy. The utility function is carefully structured to allow for an efficient implementation that returns estimates of all $m$ quantiles in time $O(mn\log(n) + m^2n)$. Experiments show that our method significantly outperforms the current state of the art on both real and synthetic data while remaining efficient enough to be practical.


Parallel tempering on optimized paths

Saifuddin Syed · Vittorio Romaniello · Trevor Campbell · Alexandre Bouchard-Côté

Parallel tempering (PT) is a class of Markov chain Monte Carlo algorithms that constructs a path of distributions annealing between a tractable reference and an intractable target, and then interchanges states along the path to improve mixing in the target. The performance of PT depends on how quickly a sample from the reference distribution makes its way to the target, which in turn depends on the particular path of annealing distributions. However, past work on PT has used only simple paths constructed from convex combinations of the reference and target log-densities. This paper begins by demonstrating that this path performs poorly in the setting where the reference and target are nearly mutually singular. To address this issue, we expand the framework of PT to general families of paths, formulate the choice of path as an optimization problem that admits tractable gradient estimates, and propose a flexible new family of spline interpolation paths for use in practice. Theoretical and empirical results both demonstrate that our proposed methodology breaks previously-established upper performance limits for traditional paths.


Whitening for Self-Supervised Representation Learning

Aleksandr Ermolov · Aliaksandr Siarohin · Enver Sangineto · Nicu Sebe

Most of the current self-supervised representation learning (SSL) methods are based on the contrastive loss and the instance-discrimination task, where augmented versions of the same image instance ("positives") are contrasted with instances extracted from other images ("negatives"). For the learning to be effective, many negatives should be compared with a positive pair, which is computationally demanding. In this paper, we propose a different direction and a new loss function for SSL, which is based on the whitening of the latent-space features. The whitening operation has a "scattering" effect on the batch samples, avoiding degenerate solutions where all the sample representations collapse to a single point. Our solution does not require asymmetric networks and it is conceptually simple. Moreover, since negatives are not needed, we can extract multiple positive pairs from the same image instance. The source code of the method and of all the experiments is available at: https://github.com/htdt/self-supervised.


Active Covering

Heinrich Jiang · Afshin Rostamizadeh

We analyze the problem of active covering, where the learner is given an unlabeled dataset and can sequentially label query examples. The objective is to label query all of the positive examples in the fewest number of total label queries. We show under standard non-parametric assumptions that a classical support estimator can be repurposed as an offline algorithm attaining an excess query cost of $\widetilde{\Theta}(n^{D/(D+1)})$ compared to the optimal learner, where $n$ is the number of datapoints and $D$ is the dimension. We then provide a simple active learning method that attains an improved excess query cost of $\widetilde{O}(n^{(D-1)/D})$. Furthermore, the proposed algorithms only require access to the positive labeled examples, which in certain settings provides additional computational and privacy benefits. Finally, we show that the active learning method consistently outperforms offline methods as well as a variety of baselines on a wide range of benchmark image-based datasets.


Learning to Rehearse in Long Sequence Memorization

Zhu Zhang · Chang Zhou · Jianxin Ma · Zhijie Lin · Jingren Zhou · Hongxia Yang · Zhou Zhao

Existing reasoning tasks often have an important assumption that the input contents can be always accessed while reasoning, requiring unlimited storage resources and suffering from severe time delay on long sequences. To achieve efficient reasoning on long sequences with limited storage resources, memory augmented neural networks introduce a human-like write-read memory to compress and memorize the long input sequence in one pass, trying to answer subsequent queries only based on the memory. But they have two serious drawbacks: 1) they continually update the memory from current information and inevitably forget the early contents; 2) they do not distinguish what information is important and treat all contents equally. In this paper, we propose the Rehearsal Memory (RM) to enhance long-sequence memorization by self-supervised rehearsal with a history sampler. To alleviate the gradual forgetting of early information, we design self-supervised rehearsal training with recollection and familiarity tasks. Further, we design a history sampler to select informative fragments for rehearsal training, making the memory focus on the crucial information. We evaluate the performance of our rehearsal memory by the synthetic bAbI task and several downstream tasks, including text/video question answering and recommendation on long sequences.


Personalized Federated Learning using Hypernetworks

Aviv Shamsian · Aviv Navon · Ethan Fetaya · Gal Chechik

Personalized federated learning is tasked with training machine learning models for multiple clients, each with its own data distribution. The goal is to train personalized models collaboratively while accounting for data disparities across clients and reducing communication costs.

We propose a novel approach to this problem using hypernetworks, termed pFedHN for personalized Federated HyperNetworks. In this approach, a central hypernetwork model is trained to generate a set of models, one model for each client. This architecture provides effective parameter sharing across clients while maintaining the capacity to generate unique and diverse personal models. Furthermore, since hypernetwork parameters are never transmitted, this approach decouples the communication cost from the trainable model size. We test pFedHN empirically in several personalized federated learning challenges and find that it outperforms previous methods. Finally, since hypernetworks share information across clients, we show that pFedHN can generalize better to new clients whose distributions differ from any client observed during training.


A Gradient Based Strategy for Hamiltonian Monte Carlo Hyperparameter Optimization

Andrew Campbell · Wenlong Chen · Vincent Stimper · Jose Miguel Hernandez-Lobato · Yichuan Zhang

Hamiltonian Monte Carlo (HMC) is one of the most successful sampling methods in machine learning. However, its performance is significantly affected by the choice of hyperparameter values. Existing approaches for optimizing the HMC hyperparameters either optimize a proxy for mixing speed or consider the HMC chain as an implicit variational distribution and optimize a tractable lower bound that can be very loose in practice. Instead, we propose to optimize an objective that quantifies directly the speed of convergence to the target distribution. Our objective can be easily optimized using stochastic gradient descent. We evaluate our proposed method and compare to baselines on a variety of problems including sampling from synthetic 2D distributions, reconstructing sparse signals, learning deep latent variable models and sampling molecular configurations from the Boltzmann distribution of a 22 atom molecule. We find that our method is competitive with or improves upon alternative baselines in all these experiments.


Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition

Shengyang Sun · Jiaxin Shi · Andrew Wilson · Roger Grosse

We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability. We propose the harmonic kernel decomposition (HKD), which uses Fourier series to decompose a kernel as a sum of orthogonal kernels. Our variational approximation exploits this orthogonality to enable a large number of inducing points at a low computational cost. We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections, and it significantly outperforms standard variational methods in scalability and accuracy. Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.


Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement

Andrew Ross · Finale Doshi-Velez

In representation learning, there has been recent interest in developing algorithms to disentangle the ground-truth generative factors behind a dataset, and metrics to quantify how fully this occurs. However, these algorithms and metrics often assume that both representations and ground-truth factors are flat, continuous, and factorized, whereas many real-world generative processes involve rich hierarchical structure, mixtures of discrete and continuous variables with dependence between them, and even varying intrinsic dimensionality. In this work, we develop benchmarks, algorithms, and metrics for learning such hierarchical representations.


Isometric Gaussian Process Latent Variable Model for Dissimilarity Data

Martin Jørgensen · Søren Hauberg

We present a probabilistic model where the latent variable respects both the distances and the topology of the modeled data. The model leverages the Riemannian geometry of the generated manifold to endow the latent space with a well-defined stochastic distance measure, which is modeled locally as Nakagami distributions. These stochastic distances are sought to be as similar as possible to observed distances along a neighborhood graph through a censoring process. The model is inferred by variational inference based on observations of pairwise distances. We demonstrate how the new model can encode invariances in the learned manifolds.


Markpainting: Adversarial Machine Learning meets Inpainting

David G Khachaturov · Ilia Shumailov · Yiren Zhao · Nicolas Papernot · Ross Anderson

Inpainting is a learned interpolation technique that is based on generative modeling and used to populate masked or missing pieces in an image; it has wide applications in picture editing and retouching. Recently, inpainting started being used for watermark removal, raising concerns. In this paper we study how to manipulate it using our markpainting technique. First, we show how an image owner with access to an inpainting model can augment their image in such a way that any attempt to edit it using that model will add arbitrary visible information. We find that we can target multiple different models simultaneously with our technique. This can be designed to reconstitute a watermark if the editor had been trying to remove it. Second, we show that our markpainting technique is transferable to models that have different architectures or were trained on different datasets, so watermarks created using it are difficult for adversaries to remove. Markpainting is novel and can be used as a manipulation alarm that becomes visible in the event of inpainting. Source code is available at: https://github.com/iliaishacked/markpainting.


Unsupervised Co-part Segmentation through Assembly

Qingzhe Gao · Bin Wang · Libin Liu · Baoquan Chen

Co-part segmentation is an important problem in computer vision for its rich applications. We propose an unsupervised learning approach for co-part segmentation from images. For the training stage, we leverage motion information embedded in videos and explicitly extract latent representations to segment meaningful object parts. More importantly, we introduce a dual procedure of part-assembly to form a closed loop with part-segmentation, enabling an effective self-supervision. We demonstrate the effectiveness of our approach with a host of extensive experiments, ranging from human bodies, hands, quadruped, and robot arms. We show that our approach can achieve meaningful and compact part segmentation, outperforming state-of-the-art approaches on diverse benchmarks.


Exact Optimization of Conformal Predictors via Incremental and Decremental Learning

Giovanni Cherubin · Konstantinos Chatzikokolakis · Martin Jaggi

Conformal Predictors (CP) are wrappers around ML models, providing error guarantees under weak assumptions on the data distribution. They are suitable for a wide range of problems, from classification and regression to anomaly detection. Unfortunately, their very high computational complexity limits their applicability to large datasets. In this work, we show that it is possible to speed up a CP classifier considerably, by studying it in conjunction with the underlying ML method, and by exploiting incremental\&decremental learning. For methods such as k-NN, KDE, and kernel LS-SVM, our approach reduces the running time by one order of magnitude, whilst producing exact solutions. With similar ideas, we also achieve a linear speed up for the harder case of bootstrapping. Finally, we extend these techniques to improve upon an optimization of k-NN CP for regression. We evaluate our findings empirically, and discuss when methods are suitable for CP optimization.


Principal Bit Analysis: Autoencoding with Schur-Concave Loss

Sourbh Bhadane · Aaron Wagner · Jayadev Acharya

We consider a linear autoencoder in which the latent variables are quantized, or corrupted by noise, and the constraint is Schur-concave in the set of latent variances. Although finding the optimal encoder/decoder pair for this setup is a nonconvex optimization problem, we show that decomposing the source into its principal components is optimal. If the constraint is strictly Schur-concave and the empirical covariance matrix has only simple eigenvalues, then any optimal encoder/decoder must decompose the source in this way. As one application, we consider a strictly Schur-concave constraint that estimates the number of bits needed to represent the latent variables under fixed-rate encoding, a setup that we call \emph{Principal Bit Analysis (PBA)}. This yields a practical, general-purpose, fixed-rate compressor that outperforms existing algorithms. As a second application, we show that a prototypical autoencoder-based variable-rate compressor is guaranteed to decompose the source into its principal components.


Linear Transformers Are Secretly Fast Weight Programmers

Imanol Schlag · Kazuki Irie · Jürgen Schmidhuber

We show the formal equivalence of linearised self-attention mechanisms and fast weight controllers from the early '90s, where a slow neural net learns by gradient descent to program the fast weights of another net through sequences of elementary programming instructions which are additive outer products of self-invented activation patterns (today called keys and values). Such Fast Weight Programmers (FWPs) learn to manipulate the contents of a finite memory and dynamically interact with it. We infer a memory capacity limitation of recent linearised softmax attention variants, and replace the purely additive outer products by a delta rule-like programming instruction, such that the FWP can more easily learn to correct the current mapping from keys to values. The FWP also learns to compute dynamically changing learning rates. We also propose a new kernel function to linearise attention which balances simplicity and effectiveness. We conduct experiments on synthetic retrieval problems as well as standard machine translation and language modelling tasks which demonstrate the benefits of our methods.


Transfer-Based Semantic Anomaly Detection

Lucas Deecke · Lukas Ruff · Robert Vandermeulen · Hakan Bilen

Detecting semantic anomalies is challenging due to the countless ways in which they may appear in real-world data. While enhancing the robustness of networks may be sufficient for modeling simplistic anomalies, there is no good known way of preparing models for all potential and unseen anomalies that can potentially occur, such as the appearance of new object classes. In this paper, we show that a previously overlooked strategy for anomaly detection (AD) is to introduce an explicit inductive bias toward representations transferred over from some large and varied semantic task. We rigorously verify our hypothesis in controlled trials that utilize intervention, and show that it gives rise to surprisingly effective auxiliary objectives that outperform previous AD paradigms.


RNNRepair: Automatic RNN Repair via Model-based Analysis

Xiaofei Xie · Wenbo Guo · Lei Ma · Wei Le · Jian Wang · Lingjun Zhou · Yang Liu · Xinyu Xing

Deep neural networks are vulnerable to adversarial attacks. Due to their black-box nature, it is rather challenging to interpret and properly repair these incorrect behaviors. This paper focuses on interpreting and repairing the incorrect behaviors of Recurrent Neural Networks (RNNs). We propose a lightweight model-based approach (RNNRepair) to help understand and repair incorrect behaviors of an RNN. Specifically, we build an influence model to characterize the stateful and statistical behaviors of an RNN over all the training data and to perform the influence analysis for the errors. Compared with the existing techniques on influence function, our method can efficiently estimate the influence of existing or newly added training samples for a given prediction at both sample level and segmentation level. Our empirical evaluation shows that the proposed influence model is able to extract accurate and understandable features. Based on the influence model, our proposed technique could effectively infer the influential instances from not only an entire testing sequence but also a segment within that sequence. Moreover, with the sample-level and segment-level influence relations, RNNRepair could further remediate two types of incorrect predictions at the sample level and segment level.


Coded-InvNet for Resilient Prediction Serving Systems

Tuan Dinh · Kangwook Lee

Inspired by a new coded computation algorithm for invertible functions, we propose Coded-InvNet a new approach to design resilient prediction serving systems that can gracefully handle stragglers or node failures. Coded-InvNet leverages recent findings in the deep learning literature such as invertible neural networks, Manifold Mixup, and domain translation algorithms, identifying interesting research directions that span across machine learning and systems. Our experimental results show that Coded-InvNet can outperform existing approaches, especially when the compute resource overhead is as low as 10%. For instance, without knowing which of the ten workers is going to fail, our algorithm can design a backup task so that it can correctly recover the missing prediction result with an accuracy of 85.9%, significantly outperforming the previous SOTA by 32.5%.


Optimization Planning for 3D ConvNets

Zhaofan Qiu · Ting Yao · Chong-Wah Ngo · Tao Mei

It is not trivial to optimally learn a 3D Convolutional Neural Networks (3D ConvNets) due to high complexity and various options of the training scheme. The most common hand-tuning process starts from learning 3D ConvNets using short video clips and then is followed by learning long-term temporal dependency using lengthy clips, while gradually decaying the learning rate from high to low as training progresses. The fact that such process comes along with several heuristic settings motivates the study to seek an optimal "path" to automate the entire training. In this paper, we decompose the path into a series of training "states" and specify the hyper-parameters, e.g., learning rate and the length of input clips, in each state. The estimation of the knee point on the performance-epoch curve triggers the transition from one state to another. We perform dynamic programming over all the candidate states to plan the optimal permutation of states, i.e., optimization path. Furthermore, we devise a new 3D ConvNets with a unique design of dual-head classifier to improve spatial and temporal discrimination. Extensive experiments on seven public video recognition benchmarks demonstrate the advantages of our proposal. With the optimization planning, our 3D ConvNets achieves superior results when comparing to the state-of-the-art recognition methods. More remarkably, we obtain the top-1 accuracy of 80.5% and 82.7% on Kinetics-400 and Kinetics-600 datasets, respectively.


Sparse Bayesian Learning via Stepwise Regression

Sebastian Ament · Carla Gomes

Sparse Bayesian Learning (SBL) is a powerful framework for attaining sparsity in probabilistic models. Herein, we propose a coordinate ascent algorithm for SBL termed Relevance Matching Pursuit (RMP) and show that, as its noise variance parameter goes to zero, RMP exhibits a surprising connection to Stepwise Regression. Further, we derive novel guarantees for Stepwise Regression algorithms, which also shed light on RMP. Our guarantees for Forward Regression improve on deterministic and probabilistic results for Orthogonal Matching Pursuit with noise. Our analysis of Backward Regression culminates in a bound on the residual of the optimal solution to the subset selection problem that, if satisfied, guarantees the optimality of the result. To our knowledge, this bound is the first that can be computed in polynomial time and depends chiefly on the smallest singular value of the matrix. We report numerical experiments using a variety of feature selection algorithms. Notably, RMP and its limiting variant are both efficient and maintain strong performance with correlated features.


Learning Representations by Humans, for Humans

Sophie Hilgard · Nir Rosenfeld · Mahzarin Banaji · Jack Cao · David Parkes

When machine predictors can achieve higher performance than the human decision-makers they support, improving the performance of human decision-makers is often conflated with improving machine accuracy. Here we propose a framework to directly support human decision-making, in which the role of machines is to reframe problems rather than to prescribe actions through prediction. Inspired by the success of representation learning in improving performance of machine predictors, our framework learns human-facing representations optimized for human performance. This “Mind Composed with Machine” framework incorporates a human decision-making model directly into the representation learning paradigm and is trained with a novel human-in-the-loop training procedure. We empirically demonstrate the successful application of the framework to various tasks and representational forms.


Evaluating the Implicit Midpoint Integrator for Riemannian Hamiltonian Monte Carlo

James Brofos · Roy Lederman

Riemannian manifold Hamiltonian Monte Carlo is traditionally carried out using the generalized leapfrog integrator. However, this integrator is not the only choice and other integrators yielding valid Markov chain transition operators may be considered. In this work, we examine the implicit midpoint integrator as an alternative to the generalized leapfrog integrator. We discuss advantages and disadvantages of the implicit midpoint integrator for Hamiltonian Monte Carlo, its theoretical properties, and an empirical assessment of the critical attributes of such an integrator for Hamiltonian Monte Carlo: energy conservation, volume preservation, and reversibility. Empirically, we find that while leapfrog iterations are faster, the implicit midpoint integrator has better energy conservation, leading to higher acceptance rates, as well as better conservation of volume and better reversibility, arguably yielding a more accurate sampling procedure.


Defense against backdoor attacks via robust covariance estimation

Jonathan Hayase · Weihao Kong · Raghav Somani · Sewoong Oh

Modern machine learning increasingly requires training on a large collection of data from multiple sources, not all of which can be trusted. A particularly frightening scenario is when a small fraction of corrupted data changes the behavior of the trained model when triggered by an attacker-specified watermark. Such a compromised model will be deployed unnoticed as the model is accurate otherwise. There has been promising attempts to use the intermediate representations of such a model to separate corrupted examples from clean ones. However, these methods require a significant fraction of the data to be corrupted, in order to have strong enough signal for detection. We propose a novel defense algorithm using robust covariance estimation to amplify the spectral signature of corrupted data. This defense is able to completely remove backdoors whenever the benchmark backdoor attacks are successful, even in regimes where previous methods have no hope for detecting poisoned examples.


Streaming Bayesian Deep Tensor Factorization

Shikai Fang · Zheng Wang · Zhimeng Pan · Ji Liu · Shandian Zhe

Despite the success of existing tensor factorization methods, most of them conduct a multilinear decomposition, and rarely exploit powerful modeling frameworks, like deep neural networks, to capture a variety of complicated interactions in data. More important, for highly expressive, deep factorization, we lack an effective approach to handle streaming data, which are ubiquitous in real-world applications. To address these issues, we propose SBTD, a Streaming Bayesian Deep Tensor factorization method. We first use Bayesian neural networks (NNs) to build a deep tensor factorization model. We assign a spike-and-slab prior over each NN weight to encourage sparsity and to prevent overfitting. We then use multivariate Delta's method and moment matching to approximate the posterior of the NN output and calculate the running model evidence, based on which we develop an efficient streaming posterior inference algorithm in the assumed-density-filtering and expectation propagation framework. Our algorithm provides responsive incremental updates for the posterior of the latent factors and NN weights upon receiving newly observed tensor entries, and meanwhile identify and inhibit redundant/useless weights. We show the advantages of our approach in four real-world applications.


Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline

Ankit Goyal · Hei Law · Bowei Liu · Alejandro Newell · Jia Deng

Processing point cloud data is an important component of many real-world systems. As such, a wide variety of point-based approaches have been proposed, reporting steady benchmark improvements over time. We study the key ingredients of this progress and uncover two critical results. First, we find that auxiliary factors like different evaluation schemes, data augmentation strategies, and loss functions, which are independent of the model architecture, make a large difference in performance. The differences are large enough that they obscure the effect of architecture. When these factors are controlled for, PointNet++, a relatively older network, performs competitively with recent methods. Second, a very simple projection-based method, which we refer to as SimpleView, performs surprisingly well. It achieves on par or better results than sophisticated state-of-the-art methods on ModelNet40 while being half the size of PointNet++. It also outperforms state-of-the-art methods on ScanObjectNN, a real-world point cloud benchmark, and demonstrates better cross-dataset generalization. Code is available at https://github.com/princeton-vl/SimpleView.


Decoupling Representation Learning from Reinforcement Learning

Adam Stooke · Kimin Lee · Pieter Abbeel · Michael Laskin

In an effort to overcome limitations of reward-driven feature learning in deep reinforcement learning (RL) from images, we propose decoupling representation learning from policy learning. To this end, we introduce a new unsupervised learning (UL) task, called Augmented Temporal Contrast (ATC), which trains a convolutional encoder to associate pairs of observations separated by a short time difference, under image augmentations and using a contrastive loss. In online RL experiments, we show that training the encoder exclusively using ATC matches or outperforms end-to-end RL in most environments. Additionally, we benchmark several leading UL algorithms by pre-training encoders on expert demonstrations and using them, with weights frozen, in RL agents; we find that agents using ATC-trained encoders outperform all others. We also train multi-task encoders on data from multiple environments and show generalization to different downstream RL tasks. Finally, we ablate components of ATC, and introduce a new data augmentation to enable replay of (compressed) latent images from pre-trained encoders when RL requires augmentation. Our experiments span visually diverse RL benchmarks in DeepMind Control, DeepMind Lab, and Atari, and our complete code is available at \url{https://github.com/astooke/rlpyt/tree/master/rlpyt/ul}.


Fairness for Image Generation with Uncertain Sensitive Attributes

Ajil Jalal · Sushrut Karmalkar · Jessica Hoffmann · Alexandros Dimakis · Eric Price

This work tackles the issue of fairness in the context of generative procedures, such as image super-resolution, which entail different definitions from the standard classification setting. Moreover, while traditional group fairness definitions are typically defined with respect to specified protected groups -- camouflaging the fact that these groupings are artificial and carry historical and political motivations -- we emphasize that there are no ground truth identities. For instance, should South and East Asians be viewed as a single group or separate groups? Should we consider one race as a whole or further split by gender? Choosing which groups are valid and who belongs in them is an impossible dilemma and being fair'' with respect to Asians may require beingunfair'' with respect to South Asians. This motivates the introduction of definitions that allow algorithms to be \emph{oblivious} to the relevant groupings.

We define several intuitive notions of group fairness and study their incompatibilities and trade-offs. We show that the natural extension of demographic parity is strongly dependent on the grouping, and \emph{impossible} to achieve obliviously. On the other hand, the conceptually new definition we introduce, Conditional Proportional Representation, can be achieved obliviously through Posterior Sampling. Our experiments validate our theoretical results and achieve fair image reconstruction using state-of-the-art generative models.


Inference for Network Regression Models with Community Structure

Mengjie Pan · Tyler Mccormick · Bailey Fosdick

Network regression models, where the outcome comprises the valued edge in a network and the predictors are actor or dyad-level covariates, are used extensively in the social and biological sciences. Valid inference relies on accurately modeling the residual dependencies among the relations. Frequently homogeneity assumptions are placed on the errors which are commonly incorrect and ignore critical natural clustering of the actors. In this work, we present a novel regression modeling framework that models the errors as resulting from a community-based dependence structure and exploits the subsequent exchangeability properties of the error distribution to obtain parsimonious standard errors for regression parameters.


Nondeterminism and Instability in Neural Network Optimization

Cecilia Summers · Michael J Dinneen

Nondeterminism in neural network optimization produces uncertainty in performance, making small improvements difficult to discern from run-to-run variability. While uncertainty can be reduced by training multiple model copies, doing so is time-consuming, costly, and harms reproducibility. In this work, we establish an experimental protocol for understanding the effect of optimization nondeterminism on model diversity, allowing us to isolate the effects of a variety of sources of nondeterminism. Surprisingly, we find that all sources of nondeterminism have similar effects on measures of model diversity. To explain this intriguing fact, we identify the instability of model training, taken as an end-to-end procedure, as the key determinant. We show that even one-bit changes in initial parameters result in models converging to vastly different values. Last, we propose two approaches for reducing the effects of instability on run-to-run variability.


Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates

Steve Chien · Prateek Jain · Walid Krichene · Steffen Rendle · Shuang Song · Abhradeep Guha Thakurta · Li Zhang

We study the problem of differentially private (DP) matrix completion under user-level privacy. We design a joint differentially private variant of the popular Alternating-Least-Squares (ALS) method that achieves: i) (nearly) optimal sample complexity for matrix completion (in terms of number of items, users), and ii) the best known privacy/utility trade-off both theoretically, as well as on benchmark data sets. In particular, we provide the first global convergence analysis of ALS with noise introduced to ensure DP, and show that, in comparison to the best known alternative (the Private Frank-Wolfe algorithm by Jain et al. (2018)), our error bounds scale significantly better with respect to the number of items and users, which is critical in practical problems. Extensive validation on standard benchmarks demonstrate that the algorithm, in combination with carefully designed sampling procedures, is significantly more accurate than existing techniques, thus promising to be the first practical DP embedding model.


Generalized Doubly Reparameterized Gradient Estimators

Matthias Bauer · Andriy Mnih

Efficient low-variance gradient estimation enabled by the reparameterization trick (RT) has been essential to the success of variational autoencoders. Doubly-reparameterized gradients (DReGs) improve on the RT for multi-sample variational bounds by applying reparameterization a second time for an additional reduction in variance. Here, we develop two generalizations of the DReGs estimator and show that they can be used to train conditional and hierarchical VAEs on image modelling tasks more effectively. We first extend the estimator to hierarchical models with several stochastic layers by showing how to treat additional score function terms due to the hierarchical variational posterior. We then generalize DReGs to score functions of arbitrary distributions instead of just those of the sampling distribution, which makes the estimator applicable to the parameters of the prior in addition to those of the posterior.


Learning disentangled representations via product manifold projection

Marco Fumero · Luca Cosmo · Simone Melzi · Emanuele Rodola

We propose a novel approach to disentangle the generative factors of variation underlying a given set of observations. Our method builds upon the idea that the (unknown) low-dimensional manifold underlying the data space can be explicitly modeled as a product of submanifolds. This definition of disentanglement gives rise to a novel weakly-supervised algorithm for recovering the unknown explanatory factors behind the data. At training time, our algorithm only requires pairs of non i.i.d. data samples whose elements share at least one, possibly multidimensional, generative factor of variation. We require no knowledge on the nature of these transformations, and do not make any limiting assumption on the properties of each subspace. Our approach is easy to implement, and can be successfully applied to different kinds of data (from images to 3D surfaces) undergoing arbitrary transformations. In addition to standard synthetic benchmarks, we showcase our method in challenging real-world applications, where we compare favorably with the state of the art.


Query Complexity of Adversarial Attacks

Grzegorz Gluch · Rüdiger Urbanke

There are two main attack models considered in the adversarial robustness literature: black-box and white-box. We consider these threat models as two ends of a fine-grained spectrum, indexed by the number of queries the adversary can ask. Using this point of view we investigate how many queries the adversary needs to make to design an attack that is comparable to the best possible attack in the white-box model. We give a lower bound on that number of queries in terms of entropy of decision boundaries of the classifier. Using this result we analyze two classical learning algorithms on two synthetic tasks for which we prove meaningful security guarantees. The obtained bounds suggest that some learning algorithms are inherently more robust against query-bounded adversaries than others.


Sharf: Shape-conditioned Radiance Fields from a Single View

Konstantinos Rematas · Ricardo Martin-Brualla · Vittorio Ferrari

We present a method for estimating neural scenes representations of objects given only a single image. The core of our method is the estimation of a geometric scaffold for the object and its use as a guide for the reconstruction of the underlying radiance field. Our formulation is based on a generative process that first maps a latent code to a voxelized shape, and then renders it to an image, with the object appearance being controlled by a second latent code. During inference, we optimize both the latent codes and the networks to fit a test image of a new object. The explicit disentanglement of shape and appearance allows our model to be fine-tuned given a single image. We can then render new views in a geometrically consistent manner and they represent faithfully the input object. Additionally, our method is able to generalize to images outside of the training domain (more realistic renderings and even real photographs). Finally, the inferred geometric scaffold is itself an accurate estimate of the object's 3D shape. We demonstrate in several experiments the effectiveness of our approach in both synthetic and real images.


Disambiguation of Weak Supervision leading to Exponential Convergence rates

Vivien Cabannnes · Francis Bach · Alessandro Rudi

Machine learning approached through supervised learning requires expensive annotation of data. This motivates weakly supervised learning, where data are annotated with incomplete yet discriminative information. In this paper, we focus on partial labelling, an instance of weak supervision where, from a given input, we are given a set of potential targets. We review a disambiguation principle to recover full supervision from weak supervision, and propose an empirical disambiguation algorithm. We prove exponential convergence rates of our algorithm under classical learnability assumptions, and we illustrate the usefulness of our method on practical examples.


Fairness of Exposure in Stochastic Bandits

Luke Lequn Wang · Yiwei Bai · Wen Sun · Thorsten Joachims

Contextual bandit algorithms have become widely used for recommendation in online systems (e.g. marketplaces, music streaming, news), where they now wield substantial influence on which items get shown to users. This raises questions of fairness to the items --- and to the sellers, artists, and writers that benefit from this exposure. We argue that the conventional bandit formulation can lead to an undesirable and unfair winner-takes-all allocation of exposure. To remedy this problem, we propose a new bandit objective that guarantees merit-based fairness of exposure to the items while optimizing utility to the users. We formulate fairness regret and reward regret in this setting and present algorithms for both stochastic multi-armed bandits and stochastic linear bandits. We prove that the algorithms achieve sublinear fairness regret and reward regret. Beyond the theoretical analysis, we also provide empirical evidence that these algorithms can allocate exposure to different arms effectively.


Improved, Deterministic Smoothing for L_1 Certified Robustness

Alexander Levine · Soheil Feizi

Randomized smoothing is a general technique for computing sample-dependent robustness guarantees against adversarial attacks for deep classifiers. Prior works on randomized smoothing against L1 adversarial attacks use additive smoothing noise and provide probabilistic robustness guarantees. In this work, we propose a non-additive and deterministic smoothing method, Deterministic Smoothing with Splitting Noise (DSSN). To develop DSSN, we first develop SSN, a randomized method which involves generating each noisy smoothing sample by first randomly splitting the input space and then returning a representation of the center of the subdivision occupied by the input sample. In contrast to uniform additive smoothing, the SSN certification does not require the random noise components used to be independent. Thus, smoothing can be done effectively in just one dimension and can therefore be efficiently derandomized for quantized data (e.g., images). To the best of our knowledge, this is the first work to provide deterministic "randomized smoothing" for a norm-based adversarial threat model while allowing for an arbitrary classifier (i.e., a deep model) to be used as a base classifier and without requiring an exponential number of smoothing samples. On CIFAR-10 and ImageNet datasets, we provide substantially larger L1 robustness certificates compared to prior works, establishing a new state-of-the-art. The determinism of our method also leads to significantly faster certificate computation. Code is available at: https://github.com/alevine0/smoothingSplittingNoise.


Phase Transitions, Distance Functions, and Implicit Neural Representations

Yaron Lipman

Representing surfaces as zero level sets of neural networks recently emerged as a powerful modeling paradigm, named Implicit Neural Representations (INRs), serving numerous downstream applications in geometric deep learning and 3D vision. Training INRs previously required choosing between occupancy and distance function representation and different losses with unknown limit behavior and/or bias. In this paper we draw inspiration from the theory of phase transitions of fluids and suggest a loss for training INRs that learns a density function that converges to a proper occupancy function, while its log transform converges to a distance function. Furthermore, we analyze the limit minimizer of this loss showing it satisfies the reconstruction constraints and has minimal surface perimeter, a desirable inductive bias for surface reconstruction. Training INRs with this new loss leads to state-of-the-art reconstructions on a standard benchmark.


Environment Inference for Invariant Learning

Elliot Creager · Joern-Henrik Jacobsen · Richard Zemel

Learning models that gracefully handle distribution shifts is central to research on domain generalization, robust optimization, and fairness. A promising formulation is domain-invariant learning, which identifies the key issue of learning which features are domain-specific versus domain-invariant. An important assumption in this area is that the training examples are partitioned into domains'' orenvironments''. Our focus is on the more common setting where such partitions are not provided. We propose EIIL, a general framework for domain-invariant learning that incorporates Environment Inference to directly infer partitions that are maximally informative for downstream Invariant Learning. We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels, and significantly outperforms ERM on worst-group performance in the Waterbirds dataset. Finally, we establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.


Parallel Droplet Control in MEDA Biochips using Multi-Agent Reinforcement Learning

Tung-Che Liang · Jin Zhou · Yun-Sheng Chan · Tsung-Yi Ho · Krishnendu Chakrabarty · Cy Lee

Microfluidic biochips are being utilized for clinical diagnostics, including COVID-19 testing, because of they provide sample-to-result turnaround at low cost. Recently, microelectrode-dot-array (MEDA) biochips have been proposed to advance microfluidics technology. A MEDA biochip manipulates droplets of nano/picoliter volumes to automatically execute biochemical protocols. During bioassay execution, droplets are transported in parallel to achieve high-throughput outcomes. However, a major concern associated with the use of MEDA biochips is microelectrode degradation over time. Recent work has shown that formulating droplet transportation as a reinforcement-learning (RL) problem enables the training of policies to capture the underlying health conditions of microelectrodes and ensure reliable fluidic operations. However, the above RL-based approach suffers from two key limitations: 1) it cannot be used for concurrent transportation of multiple droplets; 2) it requires the availability of CCD cameras for monitoring droplet movement. To overcome these problems, we present a multi-agent reinforcement learning (MARL) droplet-routing solution that can be used for various sizes of MEDA biochips with integrated sensors, and we demonstrate the reliable execution of a serial-dilution bioassay with the MARL droplet router on a fabricated MEDA biochip. To facilitate further research, we also present a simulation environment based on the PettingZoo Gym Interface for MARL-guided droplet-routing problems on MEDA biochips.


Learning from Similarity-Confidence Data

Yuzhou Cao · Lei Feng · Yitian Xu · Bo An · Gang Niu · Masashi Sugiyama

Weakly supervised learning has drawn considerable attention recently to reduce the expensive time and labor consumption of labeling massive data. In this paper, we investigate a novel weakly supervised learning problem of learning from similarity-confidence (Sconf) data, where only unlabeled data pairs equipped with confidence that illustrates their degree of similarity (two examples are similar if they belong to the same class) are needed for training a discriminative binary classifier. We propose an unbiased estimator of the classification risk that can be calculated from only Sconf data and show that the estimation error bound achieves the optimal convergence rate. To alleviate potential overfitting when flexible models are used, we further employ a risk correction scheme on the proposed risk estimator. Experimental results demonstrate the effectiveness of the proposed methods.


On the difficulty of unbiased alpha divergence minimization

Tomas Geffner · Justin Domke

Several approximate inference algorithms have been proposed to minimize an alpha-divergence between an approximating distribution and a target distribution. Many of these algorithms introduce bias, the magnitude of which becomes problematic in high dimensions. Other algorithms are unbiased. These often seem to suffer from high variance, but little is rigorously known. In this work we study unbiased methods for alpha-divergence minimization through the Signal-to-Noise Ratio (SNR) of the gradient estimator. We study several representative scenarios where strong analytical results are possible, such as fully-factorized or Gaussian distributions. We find that when alpha is not zero, the SNR worsens exponentially in the dimensionality of the problem. This casts doubt on the practicality of these methods. We empirically confirm these theoretical results.


Robust Learning-Augmented Caching: An Experimental Study

Jakub Chłędowski · Adam Polak · Bartosz Szabucki · Konrad Zolna

Effective caching is crucial for performance of modern-day computing systems. A key optimization problem arising in caching -- which item to evict to make room for a new item -- cannot be optimally solved without knowing the future. There are many classical approximation algorithms for this problem, but more recently researchers started to successfully apply machine learning to decide what to evict by discovering implicit input patterns and predicting the future. While machine learning typically does not provide any worst-case guarantees, the new field of learning-augmented algorithms proposes solutions which leverage classical online caching algorithms to make the machine-learned predictors robust. We are the first to comprehensively evaluate these learning-augmented algorithms on real-world caching datasets and state-of-the-art machine-learned predictors. We show that a straightforward method -- blindly following either a predictor or a classical robust algorithm, and switching whenever one becomes worse than the other -- has only a low overhead over a well-performing predictor, while competing with classical methods when the coupled predictor fails, thus providing a cheap worst-case insurance.


Finite mixture models do not reliably learn the number of components

Diana Cai · Trevor Campbell · Tamara Broderick

Scientists and engineers are often interested in learning the number of subpopulations (or components) present in a data set. A common suggestion is to use a finite mixture model (FMM) with a prior on the number of components. Past work has shown the resulting FMM component-count posterior is consistent; that is, the posterior concentrates on the true, generating number of components. But consistency requires the assumption that the component likelihoods are perfectly specified, which is unrealistic in practice. In this paper, we add rigor to data-analysis folk wisdom by proving that under even the slightest model misspecification, the FMM component-count posterior diverges: the posterior probability of any particular finite number of components converges to 0 in the limit of infinite data. Contrary to intuition, posterior-density consistency is not sufficient to establish this result. We develop novel sufficient conditions that are more realistic and easily checkable than those common in the asymptotics literature. We illustrate practical consequences of our theory on simulated and real data.


On Linear Identifiability of Learned Representations

Geoffrey Roeder · Luke Metz · Durk Kingma

Identifiability is a desirable property of a statistical model: it implies that the true model parameters may be estimated to any desired precision, given sufficient computational resources and data. We study identifiability in the context of representation learning: discovering nonlinear data representations that are optimal with respect to some downstream task. When parameterized as deep neural networks, such representation functions lack identifiability in parameter space, because they are over-parameterized by design. In this paper, building on recent advances in nonlinear Independent Components Analysis, we aim to rehabilitate identifiability by showing that a large family of discriminative models are in fact identifiable in function space, up to a linear indeterminacy. Many models for representation learning in a wide variety of domains have been identifiable in this sense, including text, images and audio, state-of-the-art at time of publication. We derive sufficient conditions for linear identifiability and provide empirical support for the result on both simulated and real-world data.


Parameterless Transductive Feature Re-representation for Few-Shot Learning

Wentao Cui · Yuhong Guo

Recent literature in few-shot learning (FSL) has shown that transductive methods often outperform their inductive counterparts. However, most transductive solutions, particularly the meta-learning based ones, require inserting trainable parameters on top of some inductive baselines to facilitate transduction. In this paper, we propose a parameterless transductive feature re-representation framework that differs from all existing solutions from the following perspectives. (1) It is widely compatible with existing FSL methods, including meta-learning and fine tuning based models. (2) The framework is simple and introduces no extra training parameters when applied to any architecture. We conduct experiments on three benchmark datasets by applying the framework to both representative meta-learning baselines and state-of-the-art FSL methods. Our framework consistently improves performances in all experiments and refreshes the state-of-the-art FSL results.


CLOCS: Contrastive Learning of Cardiac Signals Across Space, Time, and Patients

Dani Kiyasseh · Tingting Zhu · David Clifton

The healthcare industry generates troves of unlabelled physiological data. This data can be exploited via contrastive learning, a self-supervised pre-training method that encourages representations of instances to be similar to one another. We propose a family of contrastive learning methods, CLOCS, that encourages representations across space, time, \textit{and} patients to be similar to one another. We show that CLOCS consistently outperforms the state-of-the-art methods, BYOL and SimCLR, when performing a linear evaluation of, and fine-tuning on, downstream tasks. We also show that CLOCS achieves strong generalization performance with only 25\% of labelled training data. Furthermore, our training procedure naturally generates patient-specific representations that can be used to quantify patient-similarity.


SGLB: Stochastic Gradient Langevin Boosting

Aleksei Ustimenko · Liudmila Prokhorenkova

This paper introduces Stochastic Gradient Langevin Boosting (SGLB) - a powerful and efficient machine learning framework that may deal with a wide range of loss functions and has provable generalization guarantees. The method is based on a special form of the Langevin diffusion equation specifically designed for gradient boosting. This allows us to theoretically guarantee the global convergence even for multimodal loss functions, while standard gradient boosting algorithms can guarantee only local optimum. We also empirically show that SGLB outperforms classic gradient boosting when applied to classification tasks with 0-1 loss function, which is known to be multimodal.


Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech

Vadim Popov · Ivan Vovk · Vladimir Gogoryan · Tasnima Sadekova · Mikhail Kudinov

Recently, denoising diffusion probabilistic models and generative score matching have shown high potential in modelling complex data distributions while stochastic calculus has provided a unified point of view on these techniques allowing for flexible inference schemes. In this paper we introduce Grad-TTS, a novel text-to-speech model with score-based decoder producing mel-spectrograms by gradually transforming noise predicted by encoder and aligned with text input by means of Monotonic Alignment Search. The framework of stochastic differential equations helps us to generalize conventional diffusion probabilistic models to the case of reconstructing data from noise with different parameters and allows to make this reconstruction flexible by explicitly controlling trade-off between sound quality and inference speed. Subjective human evaluation shows that Grad-TTS is competitive with state-of-the-art text-to-speech approaches in terms of Mean Opinion Score.


Robust Testing and Estimation under Manipulation Attacks

Jayadev Acharya · Ziteng Sun · Huanyu Zhang

We study robust testing and estimation of discrete distributions in the strong contamination model. Our results cover both centralized setting and distributed setting with general local information constraints including communication and LDP constraints. Our technique relates the strength of manipulation attacks to the earth-mover distance using Hamming distance as the metric between messages (samples) from the users. In the centralized setting, we provide optimal error bounds for both learning and testing. Our lower bounds under local information constraints build on the recent lower bound methods in distributed inference. In the communication constrained setting, we develop novel algorithms based on random hashing and an L1-L1 isometry.


Memory Efficient Online Meta Learning

Durmus Alp Emre Acar · Ruizhao Zhu · Venkatesh Saligrama

We propose a novel algorithm for online meta learning where task instances are sequentially revealed with limited supervision and a learner is expected to meta learn them in each round, so as to allow the learner to customize a task-specific model rapidly with little task-level supervision. A fundamental concern arising in online meta-learning is the scalability of memory as more tasks are viewed over time. Heretofore, prior works have allowed for perfect recall leading to linear increase in memory with time. Different from prior works, in our method, prior task instances are allowed to be deleted. We propose to leverage prior task instances by means of a fixed-size state-vector, which is updated sequentially. Our theoretical analysis demonstrates that our proposed memory efficient online learning (MOML) method suffers sub-linear regret with convex loss functions and sub-linear local regret for nonconvex losses. On benchmark datasets we show that our method can outperform prior works even though they allow for perfect recall.


Bayesian Attention Belief Networks

Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou

Attention-based neural networks have achieved state-of-the-art results on a wide range of tasks. Most such models use deterministic attention while stochastic attention is less explored due to the optimization difficulties or complicated model design. This paper introduces Bayesian attention belief networks, which construct a decoder network by modeling unnormalized attention weights with a hierarchy of gamma distributions, and an encoder network by stacking Weibull distributions with a deterministic-upward-stochastic-downward structure to approximate the posterior. The resulting auto-encoding networks can be optimized in a differentiable way with a variational lower bound. It is simple to convert any models with deterministic attention, including pretrained ones, to the proposed Bayesian attention belief networks. On a variety of language understanding tasks, we show that our method outperforms deterministic attention and state-of-the-art stochastic attention in accuracy, uncertainty estimation, generalization across domains, and robustness to adversarial attacks. We further demonstrate the general applicability of our method on neural machine translation and visual question answering, showing great potential of incorporating our method into various attention-related tasks.


Quantifying Availability and Discovery in Recommender Systems via Stochastic Reachability

Mihaela Curmei · Sarah Dean · Benjamin Recht

In this work, we consider how preference models in interactive recommendation systems determine the availability of content and users' opportunities for discovery. We propose an evaluation procedure based on stochastic reachability to quantify the maximum probability of recommending a target piece of content to an user for a set of allowable strategic modifications. This framework allows us to compute an upper bound on the likelihood of recommendation with minimal assumptions about user behavior. Stochastic reachability can be used to detect biases in the availability of content and diagnose limitations in the opportunities for discovery granted to users. We show that this metric can be computed efficiently as a convex program for a variety of practical settings, and further argue that reachability is not inherently at odds with accuracy. We demonstrate evaluations of recommendation algorithms trained on large datasets of explicit and implicit ratings. Our results illustrate how preference models, selection rules, and user interventions impact reachability and how these effects can be distributed unevenly.


GeomCA: Geometric Evaluation of Data Representations

Petra Poklukar · Anastasiia Varava · Danica Kragic

Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.


Differentiable Dynamic Quantization with Mixed Precision and Adaptive Resolution

zhaoyang zhang · Wenqi Shao · Jinwei Gu · Xiaogang Wang · Ping Luo

Model quantization is challenging due to many tedious hyper-parameters such as precision (bitwidth), dynamic range (minimum and maximum discrete values) and stepsize (interval between discrete values). Unlike prior arts that carefully tune these values, we present a fully differentiable approach to learn all of them, named Differentiable Dynamic Quantization (DDQ), which has several benefits. (1) DDQ is able to quantize challenging lightweight architectures like MobileNets, where different layers prefer different quantization parameters. (2) DDQ is hardware-friendly and can be easily implemented using low-precision matrix-vector multiplication, making it capable in many hardware such as ARM. (3) Extensive experiments show that DDQ outperforms prior arts on many networks and benchmarks, especially when models are already efficient and compact. e.g., DDQ is the first approach that achieves lossless 4-bit quantization for MobileNetV2 on ImageNet.


Unified Robust Semi-Supervised Variational Autoencoder

Xu Chen

In this paper, we propose a novel noise-robust semi-supervised deep generative model by jointly tackling noisy labels and outliers simultaneously in a unified robust semi-supervised variational autoencoder (URSVAE). Typically, the uncertainty of of input data is characterized by placing uncertainty prior on the parameters of the probability density distributions in order to ensure the robustness of the variational encoder towards outliers. Subsequently, a noise transition model is integrated naturally into our model to alleviate the detrimental effects of noisy labels. Moreover, a robust divergence measure is employed to further enhance the robustness, where a novel variational lower bound is derived and optimized to infer the network parameters. By proving the influence function on the proposed evidence lower bound is bounded, the enormous potential of the proposed model in the classification in the presence of the compound noise is demonstrated. The experimental results highlight the superiority of the proposed framework by the evaluating on image classification tasks and comparing with the state-of-the-art approaches.


Adversarial Policy Learning in Two-player Competitive Games

Wenbo Guo · Xian Wu · Sui Huang · Xinyu Xing

In a two-player deep reinforcement learning task, recent work shows an attacker could learn an adversarial policy that triggers a target agent to perform poorly and even react in an undesired way. However, its efficacy heavily relies upon the zero-sum assumption made in the two-player game. In this work, we propose a new adversarial learning algorithm. It addresses the problem by resetting the optimization goal in the learning process and designing a new surrogate optimization function. Our experiments show that our method significantly improves adversarial agents' exploitability compared with the state-of-art attack. Besides, we also discover that our method could augment an agent with the ability to abuse the target game's unfairness. Finally, we show that agents adversarially re-trained against our adversarial agents could obtain stronger adversary-resistance.


Sparse within Sparse Gaussian Processes using Neighbor Information

Gia-Lac Tran · Dimitrios Milios · Pietro Michiardi · Maurizio Filippone

Approximations to Gaussian processes (GPs) based on inducing variables, combined with variational inference techniques, enable state-of-the-art sparse approaches to infer GPs at scale through mini-batch based learning. In this work, we further push the limits of scalability of sparse GPs by allowing large number of inducing variables without imposing a special structure on the inducing inputs. In particular, we introduce a novel hierarchical prior, which imposes sparsity on the set of inducing variables. We treat our model variationally, and we experimentally show considerable computational gains compared to standard sparse GPs when sparsity on the inducing variables is realized considering the nearest inducing inputs of a random mini-batch of the data. We perform an extensive experimental validation that demonstrates the effectiveness of our approach compared to the state-of-the-art. Our approach enables the possibility to use sparse GPs using a large number of inducing points without incurring a prohibitive computational cost.


Nonparametric Decomposition of Sparse Tensors

Conor Tillinghast · Shandian Zhe

Tensor decomposition is a powerful framework for multiway data analysis. Despite the success of existing approaches, they ignore the sparse nature of the tensor data in many real-world applications, explicitly or implicitly assuming dense tensors. To address this model misspecification and to exploit the sparse tensor structures, we propose Nonparametric dEcomposition of Sparse Tensors (\ours), which can capture both the sparse structure properties and complex relationships between the tensor nodes to enhance the embedding estimation. Specifically, we first use completely random measures to construct tensor-valued random processes. We prove that the entry growth is much slower than that of the corresponding tensor size, which implies sparsity. Given finite observations (\ie projections), we then propose two nonparametric decomposition models that couple Dirichlet processes and Gaussian processes to jointly sample the sparse entry indices and the entry values (the latter as a nonlinear mapping of the embeddings), so as to encode both the structure properties and nonlinear relationships of the tensor nodes into the embeddings. Finally, we use the stick-breaking construction and random Fourier features to develop a scalable, stochastic variational learning algorithm. We show the advantage of our approach in sparse tensor generation, and entry index and value prediction in several real-world applications.


Wasserstein Distributional Normalization For Robust Distributional Certification of Noisy Labeled Data

Sung Woo Park · Junseok Kwon

We propose a novel Wasserstein distributional normalization method that can classify noisy labeled data accurately. Recently, noisy labels have been successfully handled based on small-loss criteria, but have not been clearly understood from the theoretical point of view. In this paper, we address this problem by adopting distributionally robust optimization (DRO). In particular, we present a theoretical investigation of the distributional relationship between uncertain and certain samples based on the small-loss criteria. Our method takes advantage of this relationship to exploit useful information from uncertain samples. To this end, we normalize uncertain samples into the robustly certified region by introducing the non-parametric Ornstein-Ulenbeck type of Wasserstein gradient flows called Wasserstein distributional normalization, which is cheap and fast to implement. We verify that network confidence and distributional certification are fundamentally correlated and show the concentration inequality when the network escapes from over-parameterization. Experimental results demonstrate that our non-parametric classification method outperforms other parametric baselines on the Clothing1M and CIFAR-10/100 datasets when the data have diverse noisy labels.


Feature Clustering for Support Identification in Extreme Regions

Hamid Jalalzai · Rémi Leluc

Understanding the complex structure of multivariate extremes is a major challenge in various fields from portfolio monitoring and environmental risk management to insurance. In the framework of multivariate Extreme Value Theory, a common characterization of extremes' dependence structure is the angular measure. It is a suitable measure to work in extreme regions as it provides meaningful insights concerning the subregions where extremes tend to concentrate their mass. The present paper develops a novel optimization-based approach to assess the dependence structure of extremes. This support identification scheme rewrites as estimating clusters of features which best capture the support of extremes. The dimension reduction technique we provide is applied to statistical learning tasks such as feature clustering and anomaly detection. Numerical experiments provide strong empirical evidence of the relevance of our approach.


Bayesian Quadrature on Riemannian Data Manifolds

Christian Fröhlich · Alexandra Gessner · Philipp Hennig · Bernhard Schölkopf · Georgios Arvanitidis

Riemannian manifolds provide a principled way to model nonlinear geometric structure inherent in data. A Riemannian metric on said manifolds determines geometry-aware shortest paths and provides the means to define statistical models accordingly. However, these operations are typically computationally demanding. To ease this computational burden, we advocate probabilistic numerical methods for Riemannian statistics. In particular, we focus on Bayesian quadrature (BQ) to numerically compute integrals over normal laws on Riemannian manifolds learned from data. In this task, each function evaluation relies on the solution of an expensive initial value problem. We show that by leveraging both prior knowledge and an active exploration scheme, BQ significantly reduces the number of required evaluations and thus outperforms Monte Carlo methods on a wide range of integration problems. As a concrete application, we highlight the merits of adopting Riemannian geometry with our proposed framework on a nonlinear dataset from molecular dynamics.


Label-Only Membership Inference Attacks

Christopher Choquette-Choo · Florian Tramer · Nicholas Carlini · Nicolas Papernot

Membership inference is one of the simplest privacy threats faced by machine learning models that are trained on private sensitive data. In this attack, an adversary infers whether a particular point was used to train the model, or not, by observing the model's predictions. Whereas current attack methods all require access to the model's predicted confidence score, we introduce a label-only attack that instead evaluates the robustness of the model's predicted (hard) labels under perturbations of the input, to infer membership. Our label-only attack is not only as-effective as attacks requiring access to confidence scores, it also demonstrates that a class of defenses against membership inference, which we call ``confidence masking'' because they obfuscate the confidence scores to thwart attacks, are insufficient to prevent the leakage of private information. Our experiments show that training with differential privacy or strong L2 regularization are the only current defenses that meaningfully decrease leakage of private information, even for points that are outliers of the training distribution.


Hierarchical Clustering of Data Streams: Scalable Algorithms and Approximation Guarantees

Anand Rajagopalan · Fabio Vitale · Danny Vainstein · Gui Citovsky · Cecilia Procopiuc · Claudio Gentile

We investigate the problem of hierarchically clustering data streams containing metric data in R^d. We introduce a desirable invariance property for such algorithms, describe a general family of hyperplane-based methods enjoying this property, and analyze two scalable instances of this general family against recently popularized similarity/dissimilarity-based metrics for hierarchical clustering. We prove a number of new results related to the approximation ratios of these algorithms, improving in various ways over the literature on this subject. Finally, since our algorithms are principled but also very practical, we carry out an experimental comparison on both synthetic and real-world datasets showing competitive results against known baselines.


Representation Subspace Distance for Domain Adaptation Regression

Xinyang Chen · Sinan Wang · Jianmin Wang · Mingsheng Long

Regression, as a counterpart to classification, is a major paradigm with a wide range of applications. Domain adaptation regression extends it by generalizing a regressor from a labeled source domain to an unlabeled target domain. Existing domain adaptation regression methods have achieved positive results limited only to the shallow regime. A question arises: Why learning invariant representations in the deep regime less pronounced? A key finding of this paper is that classification is robust to feature scaling but regression is not, and aligning the distributions of deep representations will alter feature scale and impede domain adaptation regression. Based on this finding, we propose to close the domain gap through orthogonal bases of the representation spaces, which are free from feature scaling. Inspired by Riemannian geometry of Grassmann manifold, we define a geometrical distance over representation subspaces and learn deep transferable representations by minimizing it. To avoid breaking the geometrical properties of deep representations, we further introduce the bases mismatch penalization to match the ordering of orthogonal bases across representation subspaces. Our method is evaluated on three domain adaptation regression benchmarks, two of which are introduced in this paper. Our method outperforms the state-of-the-art methods significantly, forming early positive results in the deep regime.


Mixed Nash Equilibria in the Adversarial Examples Game

Laurent Meunier · Meyer Scetbon · Rafael Pinot · Jamal Atif · Yann Chevaleyre

This paper tackles the problem of adversarial examples from a game theoretic point of view. We study the open question of the existence of mixed Nash equilibria in the zero-sum game formed by the attacker and the classifier. While previous works usually allow only one player to use randomized strategies, we show the necessity of considering randomization for both the classifier and the attacker. We demonstrate that this game has no duality gap, meaning that it always admits approximate Nash equilibria. We also provide the first optimization algorithms to learn a mixture of classifiers that approximately realizes the value of this game, \emph{i.e.} procedures to build an optimally robust randomized classifier.