Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Information-Theoretic Methods for Rigorous, Responsible, and Reliable Machine Learning (ITR3)

Out-of-Distribution Robustness in Deep Learning Compression

Eric Lei · Hamed Hassani


Abstract:

In recent years, deep neural network (DNN) compression systems have proved to be highly effective for designing source codes for many natural sources. However, like many other machine learning systems, these compressors suffer from vulnerabilities to distribution shifts as well as out-of-distribution (OOD) data, which reduces their real-world applications. In this paper, we initiate the study of OOD robust compression. Considering robustness to distributions within a Wasserstein ball around a base distribution, we propose algorithmic and architectural frameworks built on two principled methods: one that trains DNN compressors using distributionally-robust optimization (DRO), and the other which uses a structured latent code. Our results demonstrate that both methods enforce robustness compared to a standard DNN compressor, and that using a structured code can be superior to the DRO compressor. We observe tradeoffs between robustness and distortion and corroborate these findings theoretically for a specific class of sources.

Chat is not available.