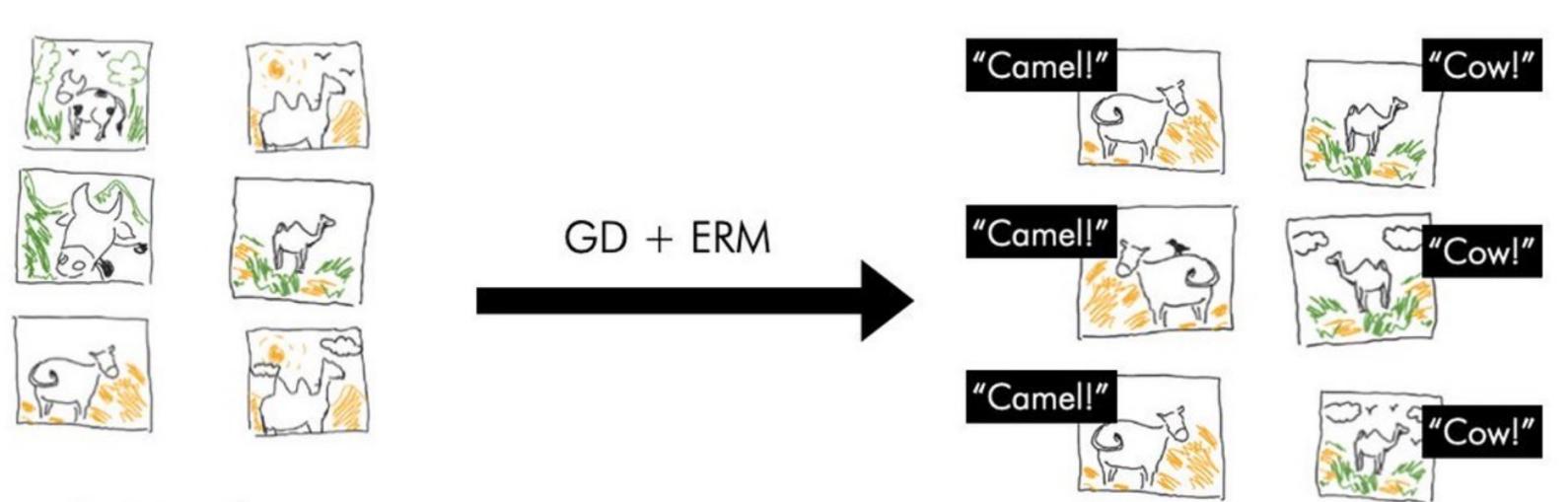


Understanding and Improving Feature Learning for Out-of-Distribution Generalization

Yongqiang Chen* CUHK, Tencent Al Lab

with Wei Huang*, Kaiwen Zhou*, Yatao Bian, Bo Han, and James Cheng

ERM learns predictive but spurious features, that are bad for out-of-distribution (OOD) generalization.



Training domain

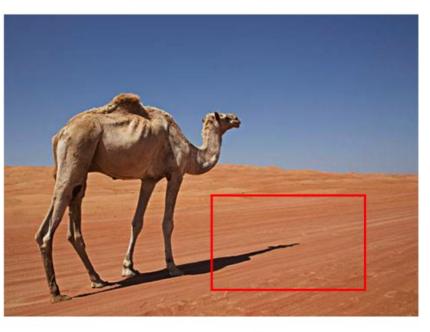
Cows: 90% green background

Camels: 90% yellow background

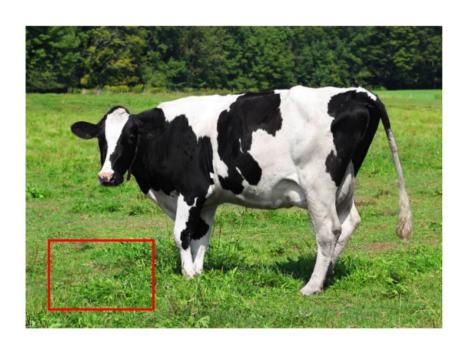
Test domain

Cows: 0% green background

Camels: 0% yellow background

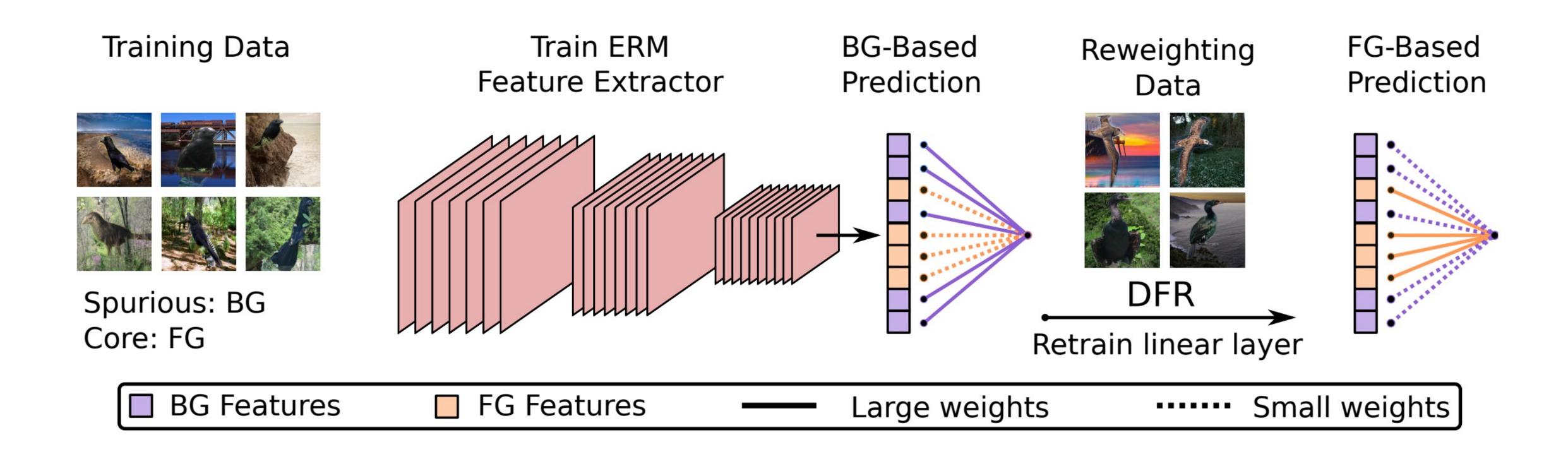


camel

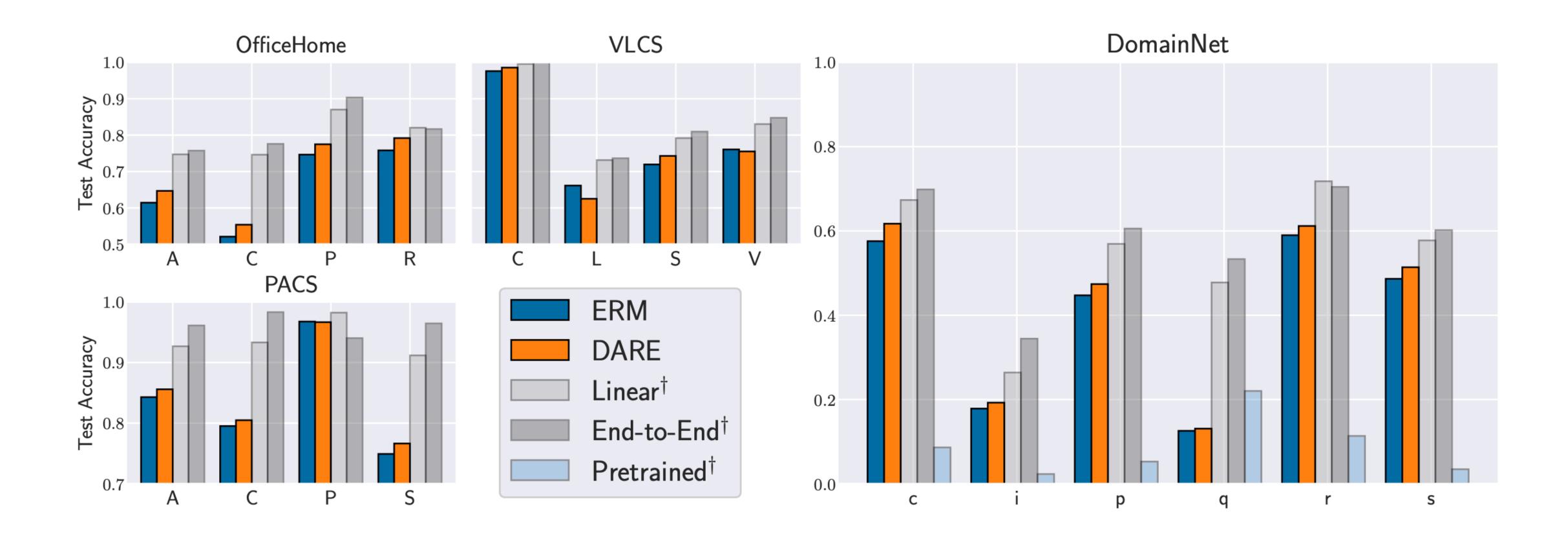


COW

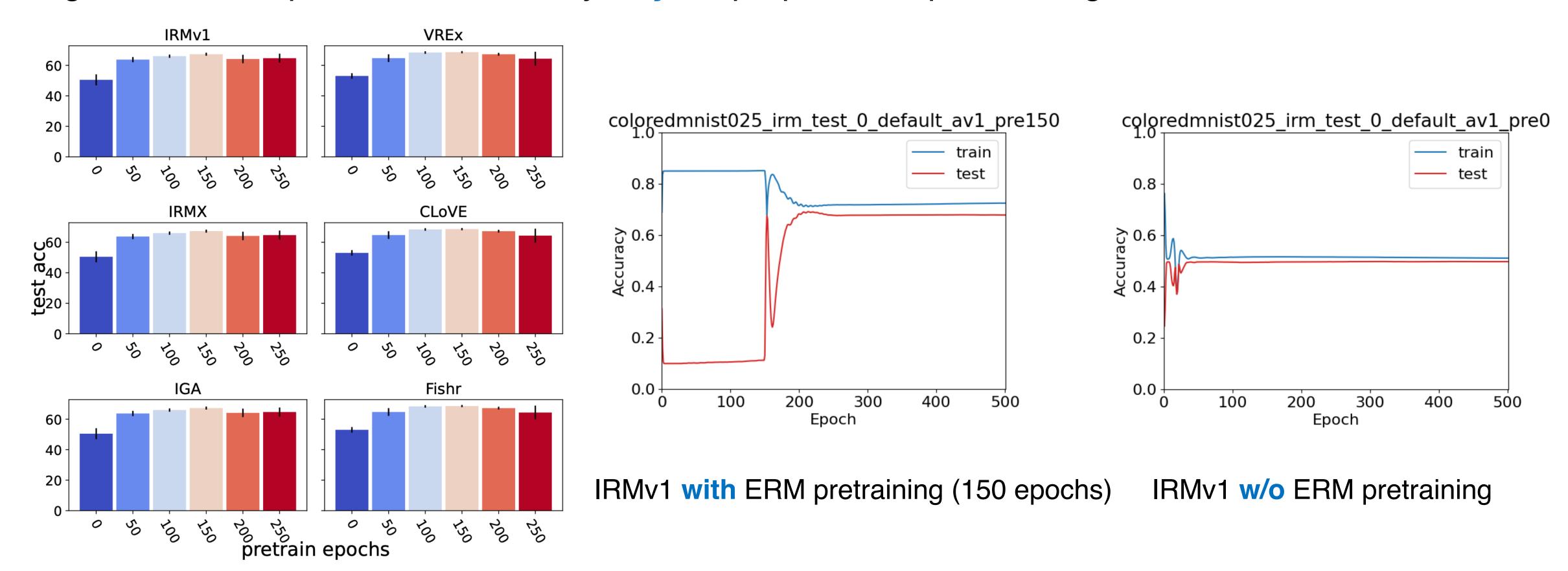
ERM already learns invariant features, that are useful for OOD generalization.



ERM already learns invariant features, that are useful for OOD generalization.



OOD generalization performance heavily rely on proper ERM pre-training.



OOD performance on ColoredMNIST

Is there a contradict?

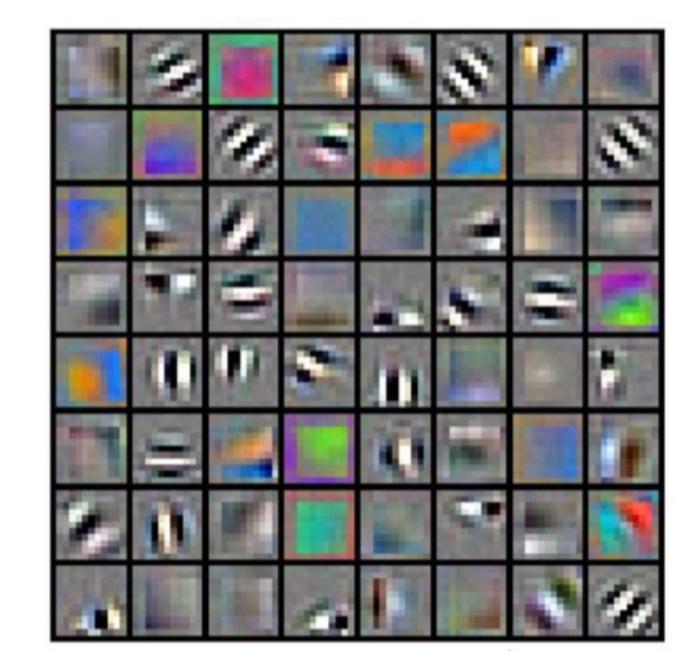
or

A lack of understanding about feature learning in OOD generalization?

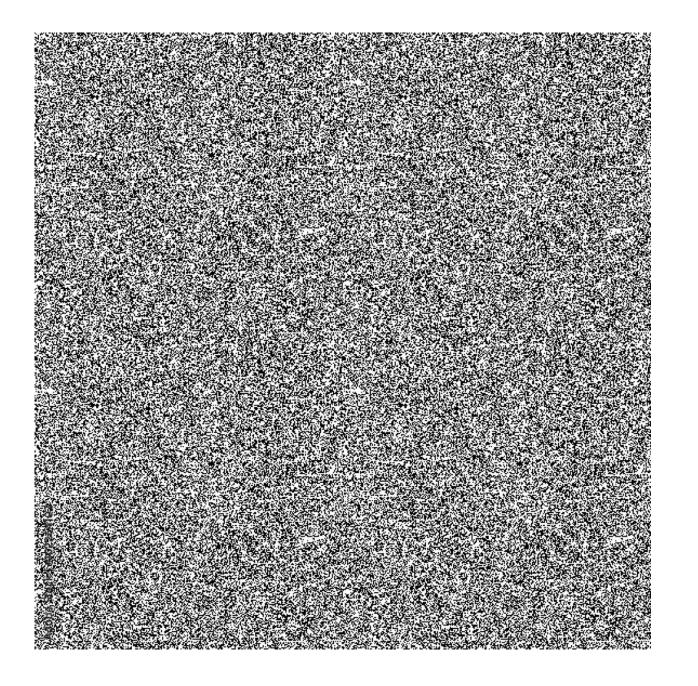
Data Model for OOD Generalization

- Two classes $y = \{-1, +1\}$
- ullet The input $\mathbf{x} \in \mathbb{R}^{2d}$ is composed of

A feature patch $\mathbf{x}_1 \in \mathbb{R}^d$

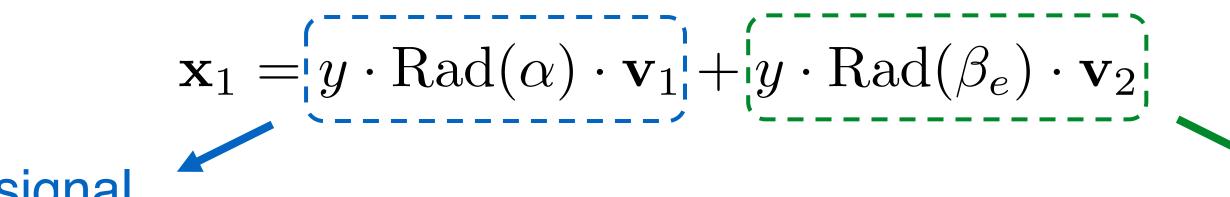


A noise patch $\mathbf{x}_2 \in \mathbb{R}^d$

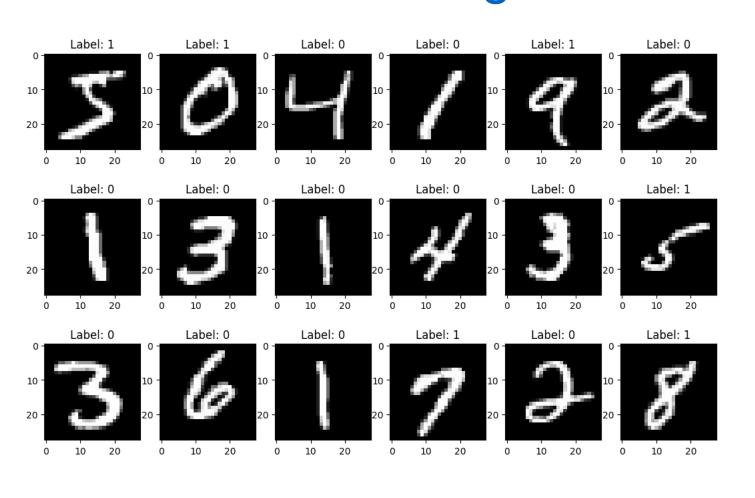


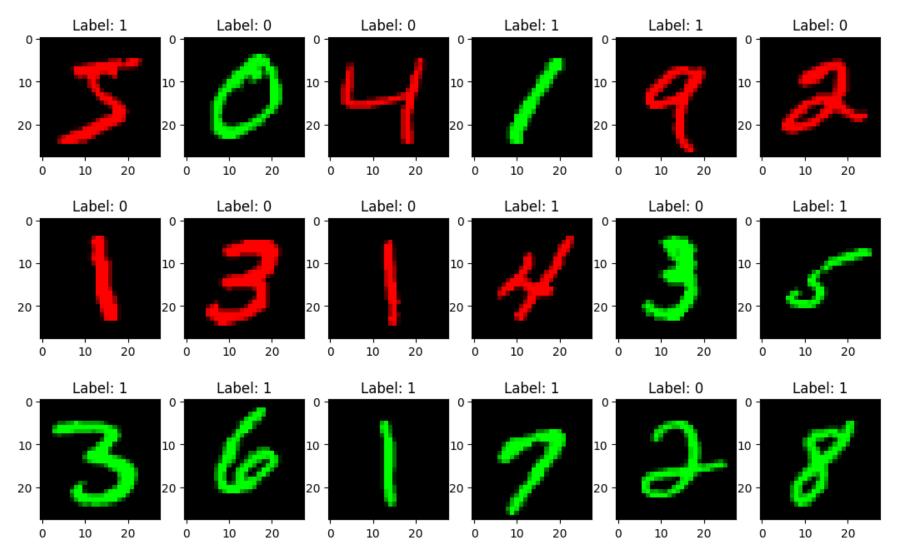
Data Model for OOD Generalization

- Two classes $y = \{-1, +1\}$
- The input $\mathbf{x} \in \mathbb{R}^{2d}$ is composed of a feature patch $\mathbf{x}_1 \in \mathbb{R}^d$ and a noise patch $\mathbf{x}_2 \in \mathbb{R}^d$
- The feature patch $\mathbf{x}_1 \in \mathbb{R}^d$ is generated via:

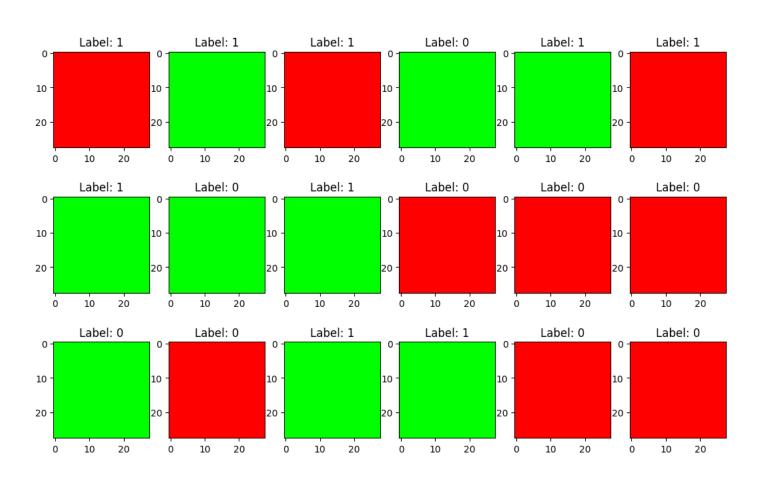


Invariant signal

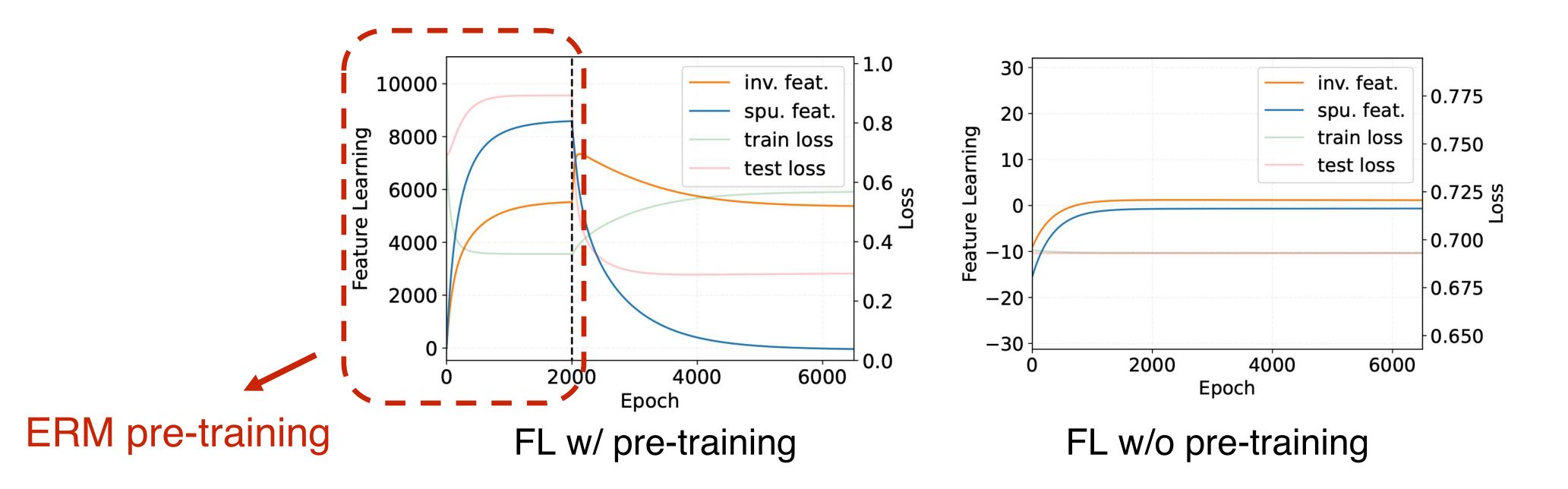




Spurious signal



ERM and IRM Feature Learning

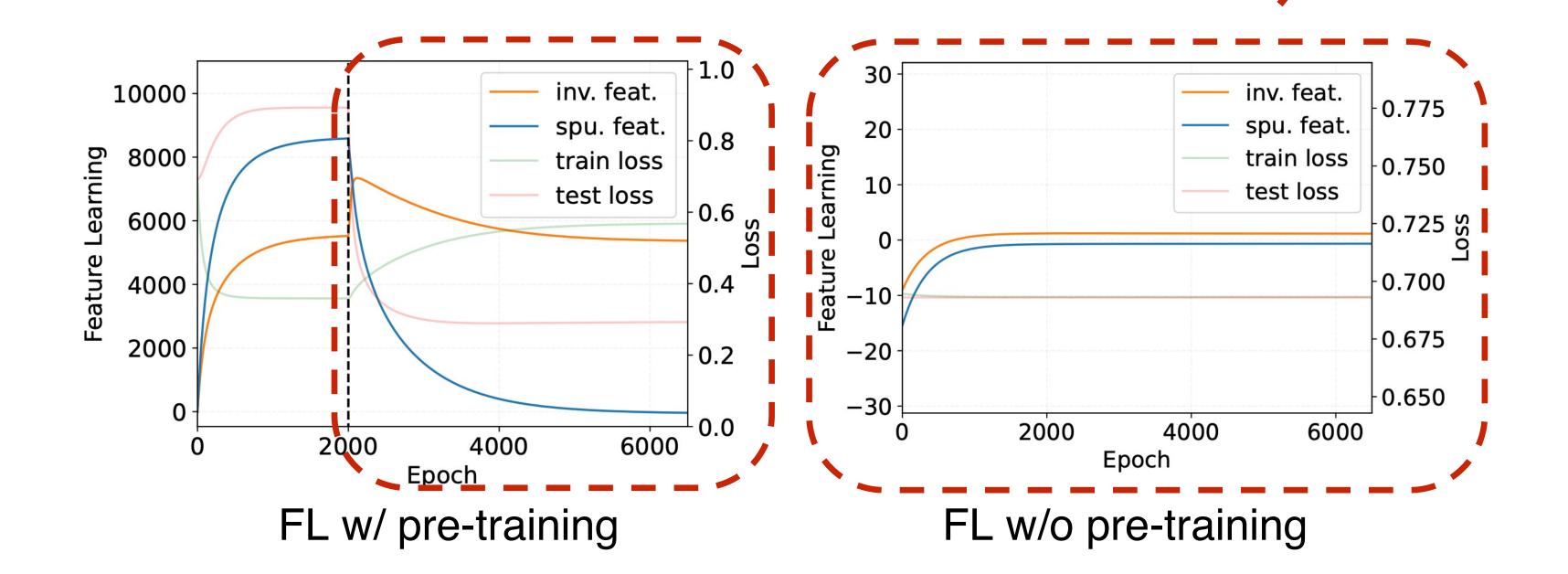


Theoretical Results (Informal):

- ERM learns both invariant and spurious features.
- The invariant and spurious feature learning speed depends on the *correlation strength* with the labels.

ERM and IRM Feature Learning

OOD training with IRMv1



Theoretical Results (Informal):

- IRMv1 cannot learn any features even at the beginning of training;
- IRMv1 highly relies on ERM pre-training feature quality to extract invariant features.

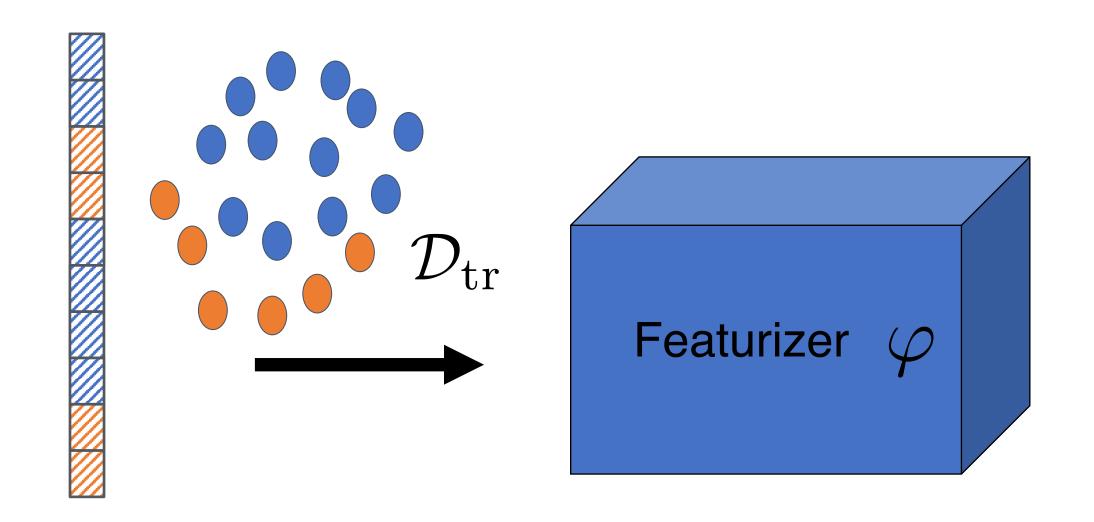
ERM and IRM Feature Learning

Theoretical Results (Informal):

- IRMv1 cannot learn any features even at the beginning of training;
- IRMv1 highly relies on ERM pre-training feature quality to extract invariant features.

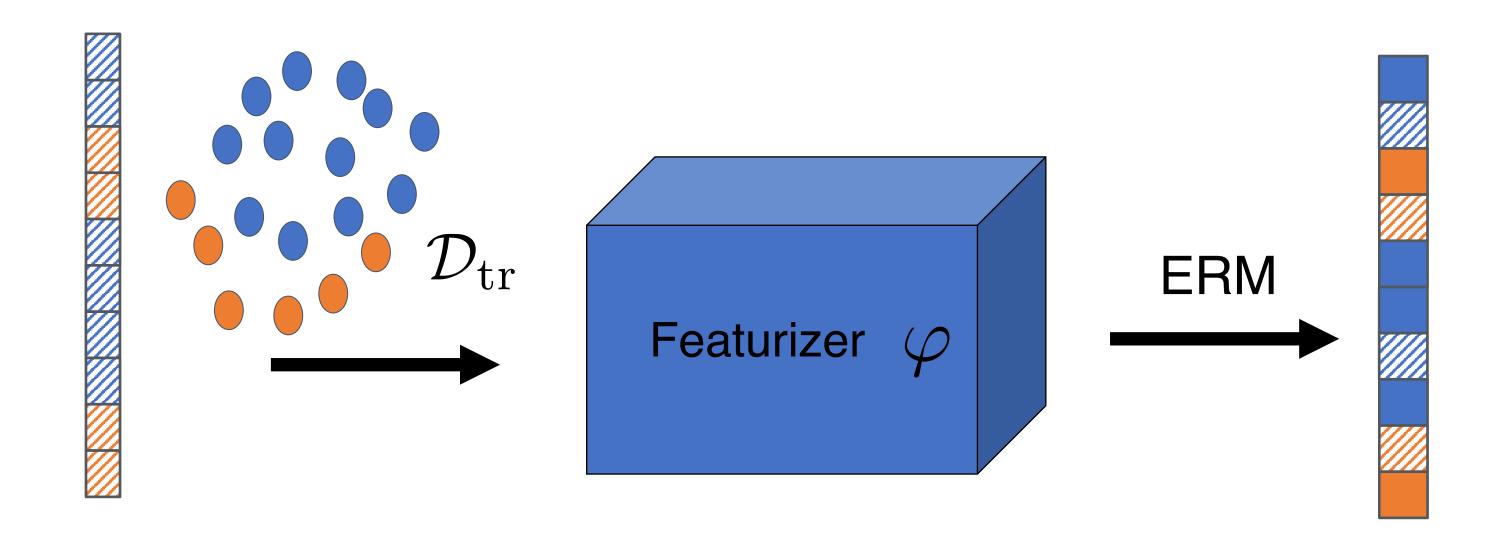
Feature Learning with ERM

Consider the following dataset dominated by spurious features:



Feature Learning with ERM

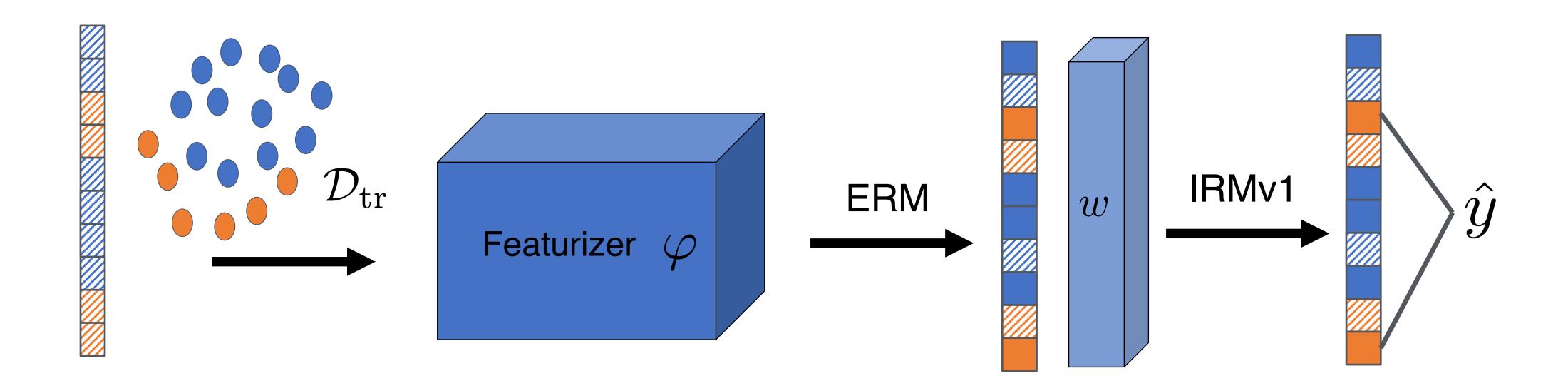
ERM learns the spurious features *more than* the invariant features.





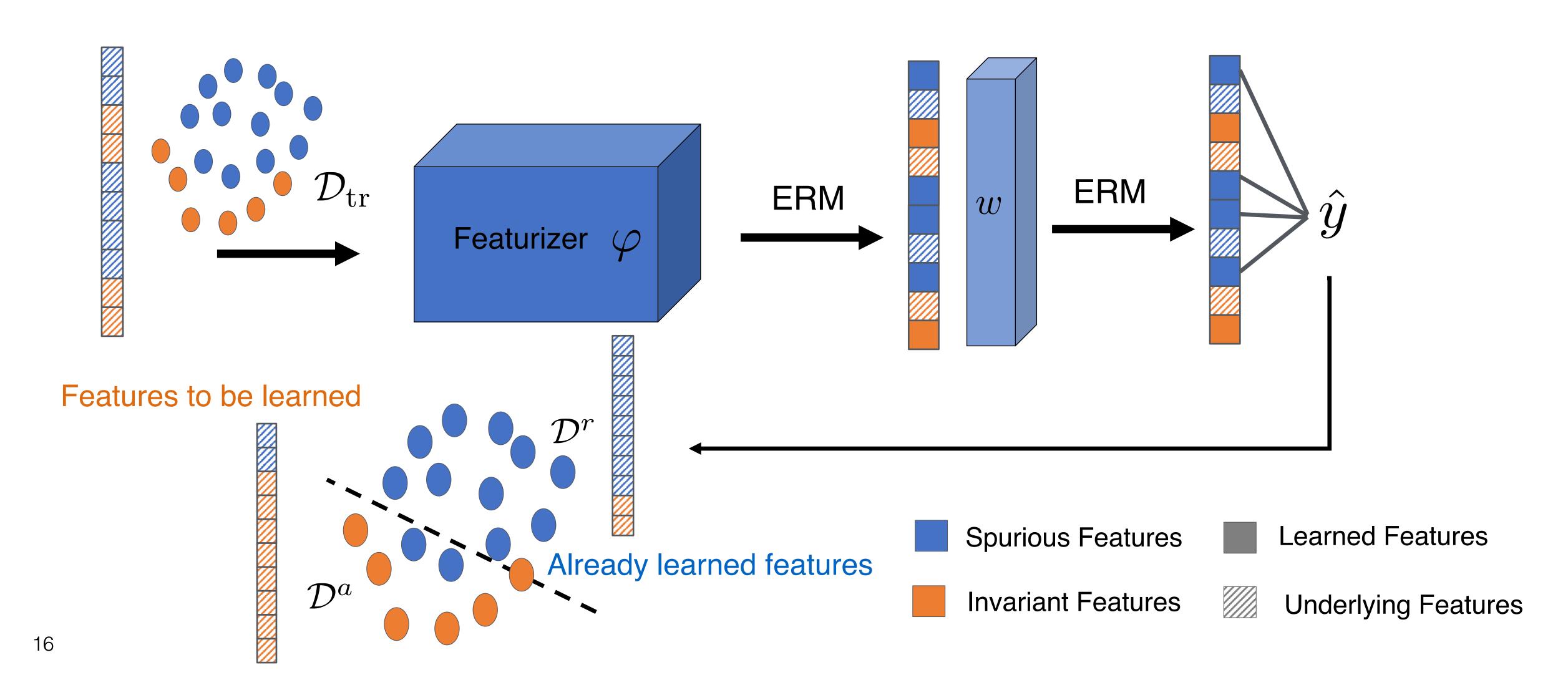
Feature Learning with ERM

OOD training can only leverage *limited* invariant features for prediction.



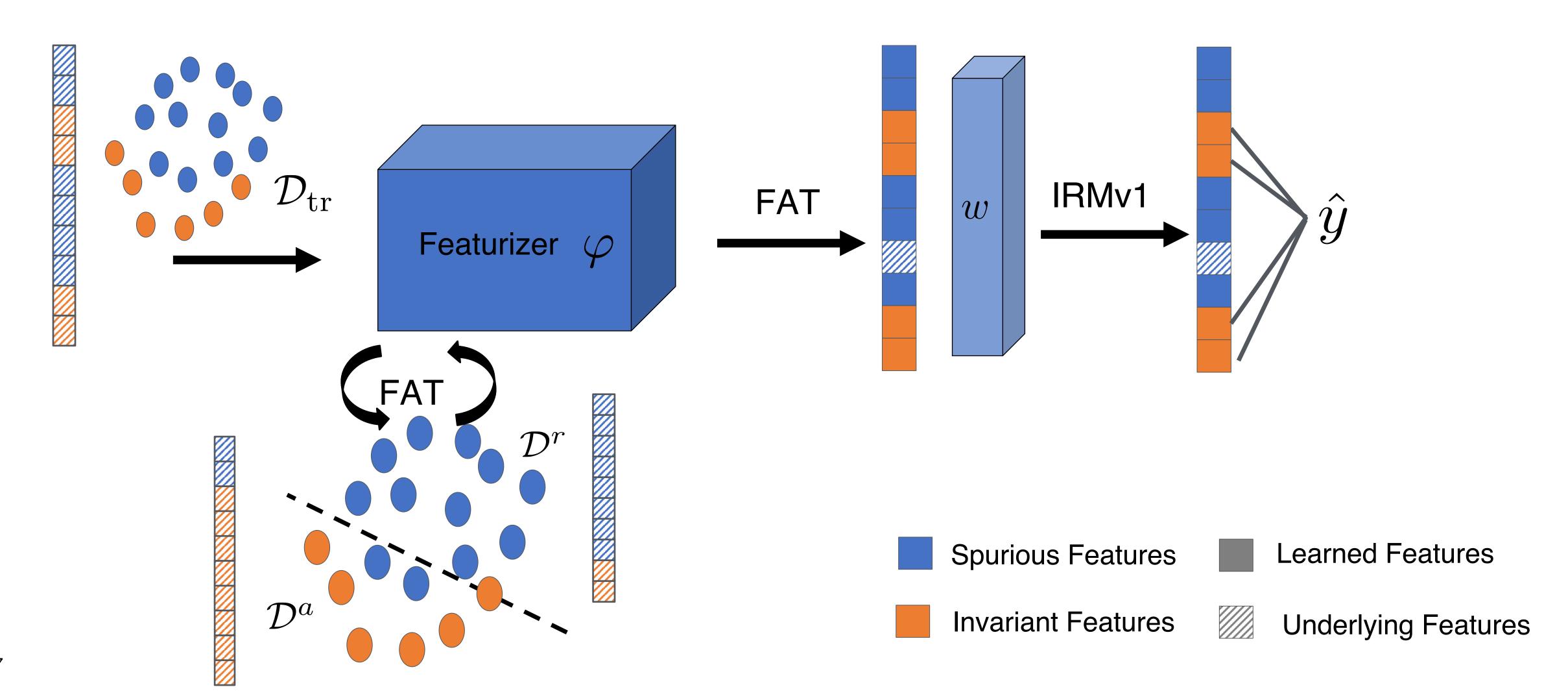
FAT: Feature Augmented Training

Leveraging the feature learning information can partition the dataset into retention sets \mathcal{D}^r and augmentation sets \mathcal{D}^a .



FAT: Feature Augmented Training

Performing feature augmentation and retention several rounds, we can obtain richer feature representations that facilitate better OOD generalization.



Proof-of-Concept Experimental Results

FAT boosts OOD performance of various objectives across various ColoredMNIST variant datasets.

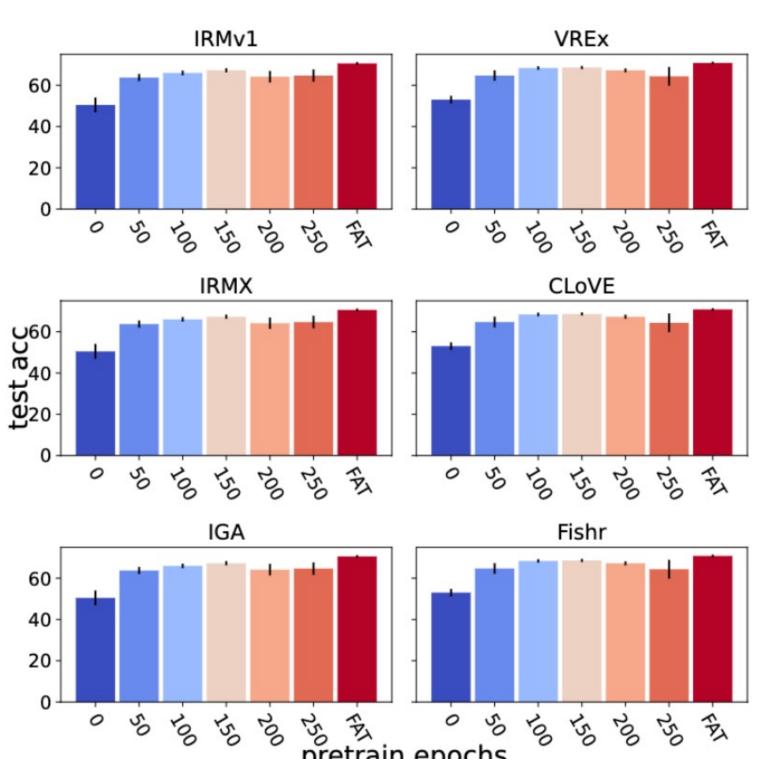


Table 1: OOD generalization performance on COLOREDMNIST datasets initialized with different representations.

			Colored	MNIST-025		COLOREDMNIST-01			
_		ERM-NF	ERM	BONSAI	FAT	ERM-NF	ERM	Bonsai	FAT
	ERM	17.14 (±0.73)	$12.40~(\pm 0.32)$	$11.21~(\pm 0.49)$	17.27 (±2.55)	$73.06 (\pm 0.71)$	$73.75~(\pm 0.49)$	$70.95~(\pm 0.93)$	76.05 (±1.45)
1	IRMv1	$67.29~(\pm 0.99)$	$59.81~(\pm 4.46)$	$70.28~(\pm 0.72)$	$70.57~(\pm 0.68)$	$76.89 (\pm 3.25)$	$73.84~(\pm 0.56)$	$76.71~(\pm 4.10)$	$82.33~(\pm 1.77)$
	V-REX	$68.62~(\pm 0.73)$	$65.96~(\pm1.29)$	$70.31~(\pm 0.66)$	70.82 (±0.59)	$83.52 (\pm 2.52)$	$81.20~(\pm 3.27)$	$82.61~(\pm 1.76)$	$84.70~(\pm 0.69)$
	IRMX	$67.00~(\pm 1.95)$	$64.05~(\pm 0.88)$	$70.46~(\pm 0.42)$	70.78 (± 0.61)	$81.61(\pm 1.98)$	$75.97~(\pm 0.88)$	$80.28~(\pm 1.62)$	$84.34~(\pm 0.97)$
	IB-IRM	$56.09 (\pm 2.04)$	$59.81~(\pm 4.46)$	$70.28~(\pm 0.72)$	70.57 (±0.68)	$75.81 (\pm 0.63)$	$73.84~(\pm 0.56)$	$76.71~(\pm 4.10)$	$82.33~(\pm 1.77)$
	CLOVE	58.67 (±7.69)	$65.78~(\pm 0.00)$	$65.57~(\pm 3.02)$	65.78 (±2.68)	$75.66~(\pm 10.6)$	$74.73~(\pm 0.36)$	$72.73~(\pm 1.18)$	75 .12 (\pm 1.08)
	IGA	51.22 (±3.67)	$62.43~(\pm 3.06)$	$70.17~(\pm 0.89)$	$67.11~(\pm 3.40)$	$74.20~(\pm 2.45)$	$73.74~(\pm 0.48)$	$74.72~(\pm 3.60)$	83.46 (±2.17)
	Fishr	$69.38~(\pm 0.39)$	$67.74~(\pm 0.90)$	$68.75~(\pm 1.10)$	70.56 (±0.97)	$77.29~(\pm 1.61)$	$82.23~(\pm 1.35)$	$84.19\ (\pm0.66)$	$84.26~(\pm 0.93)$
]	ORACLE	$71.97~(\pm 0.34)$				$86.55~(\pm 0.27)$			
							•		

Stronger spurious signal

Stronger invariant signal

Real-World Experimental Results

FAT boosts OOD performance of various objectives across 6 challenging real-world OOD datasets.

Table 2: OOD generalization performances on WILDS benchmark.

Lyrm	Memuon	CAMELYON17	CIVILCOMMENTS	FMoW	IWILDCAM	AMAZON	RxRx1
INIT.	Метнор	Avg. acc. (%)	Worst acc. (%)	Worst acc. (%)	Macro F1	10-th per. acc. (%)	Avg. acc. (%)
ERM	DFR [†]	$95.14~(\pm 1.96)$	77.34 (±0.50)	41.96 (±1.90)	$23.15~(\pm 0.24)$	48.00 (±0.00)	-
ERM	DFR-s [†]	_	$82.24~(\pm 0.13)$	$56.17 (\pm 0.62)$	$52.44\ (\pm0.34)$	-	-:
Bonsai	DFR [†]	$95.17~(\pm 0.18)$	$77.07~(\pm 0.85)$	$43.26~(\pm 0.82)$	$21.36~(\pm 0.41)$	$46.67~(\pm 0.00)$	-
Bonsai	DFR-s [†]	_	$81.26~(\pm 1.86)$	$58.58 (\pm 1.17)$	$50.85~(\pm 0.18)$	-	
FAT	DFR [†]	95.28 (±0.19)	77.34 (±0.59)	43.54 (±1.26)	23.54 (±0.52)	$49.33\ (\pm0.00)$	-
FAT	DFR-s [†]	-	$79.56~(\pm 0.38)$	$57.69\ (\pm0.78)$	$52.31\ (\pm0.38)$	-	-
ERM	ERM	$74.30~(\pm 5.96)$	55.53 (±1.78)	33.58 (±1.02)	28.22 (±0.78)	51.11 (±0.63)	30.21 (±0.09)
ERM	GroupDRO	$76.09~(\pm 6.46)$	$69.50~(\pm 0.15)$	$33.03~(\pm 0.52)$	$28.51~(\pm 0.58)$	$52.00~(\pm 0.00)$	$29.99\ (\pm0.13)$
ERM	IRMv1	$75.68~(\pm 7.41)$	$68.84~(\pm 0.95)$	$33.45~(\pm 1.07)$	$28.76~(\pm 0.45)$	$52.00~(\pm 0.00)$	$30.10~(\pm 0.05)$
ERM	V-REx	$71.60~(\pm 7.88)$	$69.03~(\pm 1.08)$	$33.06~(\pm 0.46)$	$28.82~(\pm 0.47)$	$52.44\ (\pm0.63)$	$29.88~(\pm 0.35)$
ERM	IRMX	$73.49~(\pm 9.33)$	$68.91~(\pm 1.19)$	$33.13~(\pm 0.86)$	$28.82~(\pm 0.47)$	$52.00~(\pm 0.00)$	$30.10~(\pm 0.05)$
Bonsai	ERM	$73.98~(\pm 5.30)$	$63.34~(\pm 3.49)$	$31.91~(\pm 0.51)$	$28.27~(\pm 1.05)$	$48.58~(\pm 0.56)$	$24.22~(\pm 0.44)$
Bonsai	GroupDRO	$72.82~(\pm 5.37)$	$70.23~(\pm 1.33)$	$33.12~(\pm 1.20)$	$27.16~(\pm 1.18)$	$42.67~(\pm 1.09)$	$22.95~(\pm 0.46)$
Bonsai	IRMv1	$73.59~(\pm 6.16)$	$68.39\ (\pm2.01)$	$32.51~(\pm 1.23)$	$27.60~(\pm 1.57)$	$47.11\ (\pm0.63)$	$23.35\ (\pm0.43)$
Bonsai	V-REx	$76.39~(\pm 5.32)$	$68.67~(\pm 1.29)$	$33.17 (\pm 1.26)$	$25.81~(\pm 0.42)$	$48.00~(\pm 0.00)$	$23.34\ (\pm0.42)$
Bonsai	IRMX	$64.77 (\pm 10.1)$	$69.56~(\pm 0.95)$	$32.63~(\pm 0.75)$	$27.62\ (\pm0.66)$	$46.67\ (\pm0.00)$	$23.34\ (\pm0.40)$
FAT	ERM	77.80 (\pm 2.48)	68.11 (±2.27)	$33.13~(\pm 0.78)$	$28.47~(\pm 0.67)$	$52.89~(\pm 0.63)$	30.66 (±0.42)
FAT	GroupDRO	80.41 (±3.30)	$71.29~(\pm 0.46)$	$33.55 (\pm 1.67)$	$28.38 (\pm 1.32)$	$52.58~(\pm 0.56)$	$29.99 (\pm 0.11)$
FAT	IRMv1	$77.97 (\pm 3.09)$	$70.33~(\pm 1.14)$	$34.04~(\pm 0.70)$	29.66 (±1.52)	$52.89\ (\pm0.63)$	$29.99 (\pm 0.19)$
FAT	V-REx	$75.12~(\pm 6.55)$	$70.97~(\pm 1.06)$	$34.00~(\pm 0.71)$	$29.48~(\pm 1.94)$	$52.89\ (\pm0.63)$	$30.57~(\pm 0.53)$
FAT	IRMX	$76.91~(\pm 6.76)$	$71.18~(\pm 1.10)$	$33.99\ (\pm0.73)$	$29.04~(\pm 2.96)$	$52.89\ (\pm0.63)$	$29.92\ (\pm0.16)$

[†]DFR/DFR-s use an additional OOD dataset to evaluate invariant and spurious feature learning, respectively.

Summary

We established a feature learning framework and theoretically revealed that ERM will learn both invariant and spurious features.

We also show that the performance of OOD objectives like IRM highly rely on the features quality, which motivates to learn richer features before OOD training.

We propose a novel rich feature learning algorithm FAT and conduct extensive experiments in challenging OOD benchmarks to verify the effectiveness of FAT.

Thank you!

Contact: yqchen@cse.cuhk.edu.hk