

Towards Fair Knowledge Distillation using Student Feedback

Abhinav Java¹, Surgan Jandial¹, Chirag Agarwal²

¹MDSR Labs, Adobe, India

²Harvard University

BIRD learns bias-aware representations

from the teacher f_{τ} by training the

a. In Stage I, BIRD updates a copy of

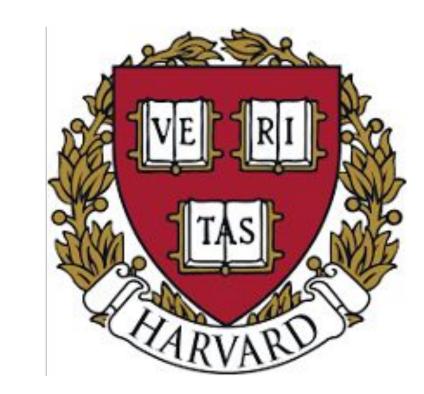
b. in Stage II, the updated model f_{C} is

c. in Stage III, the student model f_s is

distills unbiased representations using

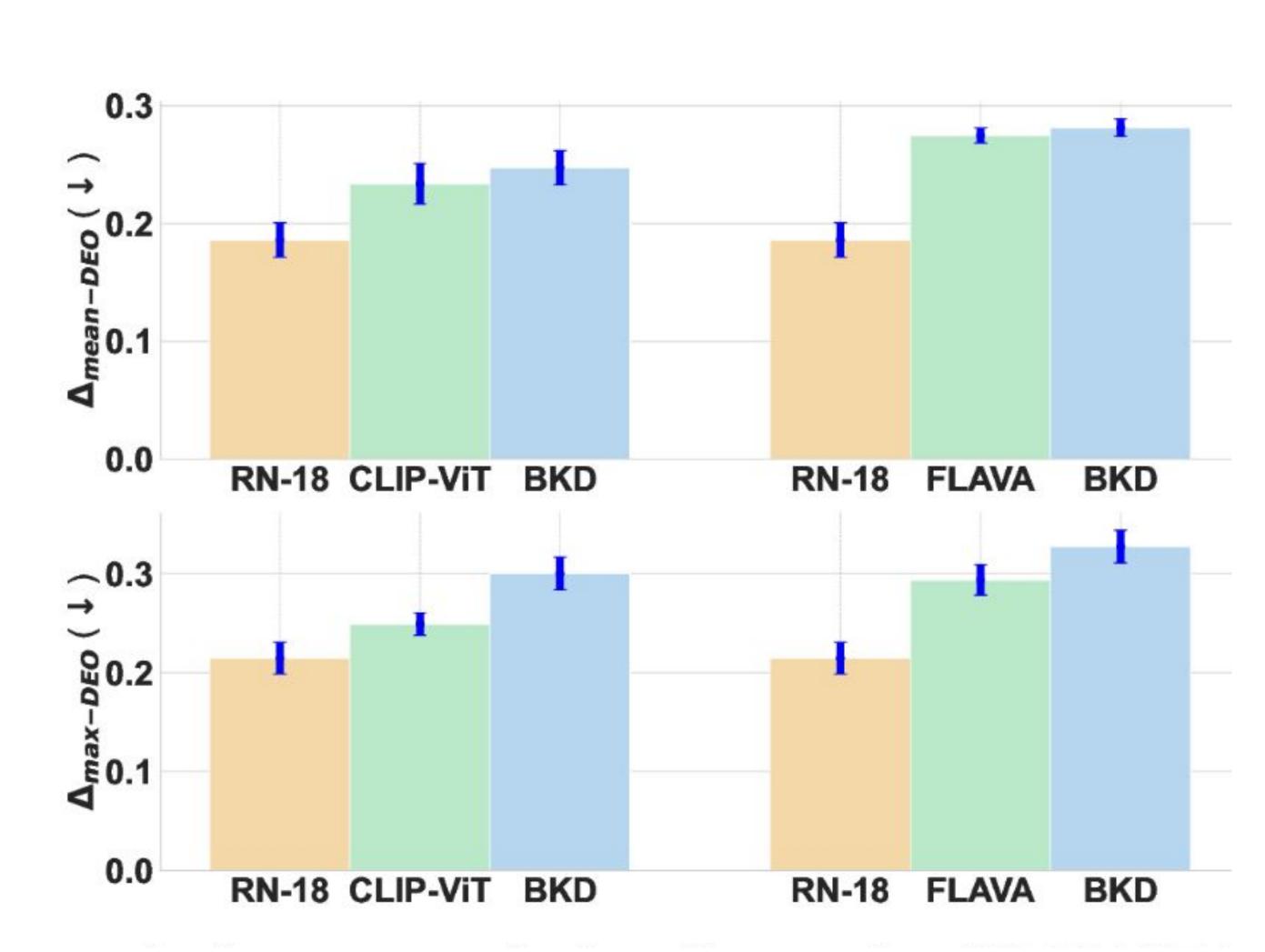
used to train ϕ with bias-feedback

meta-gradients from L_{outer} , and


FAIRDISTILL (from Stage II).

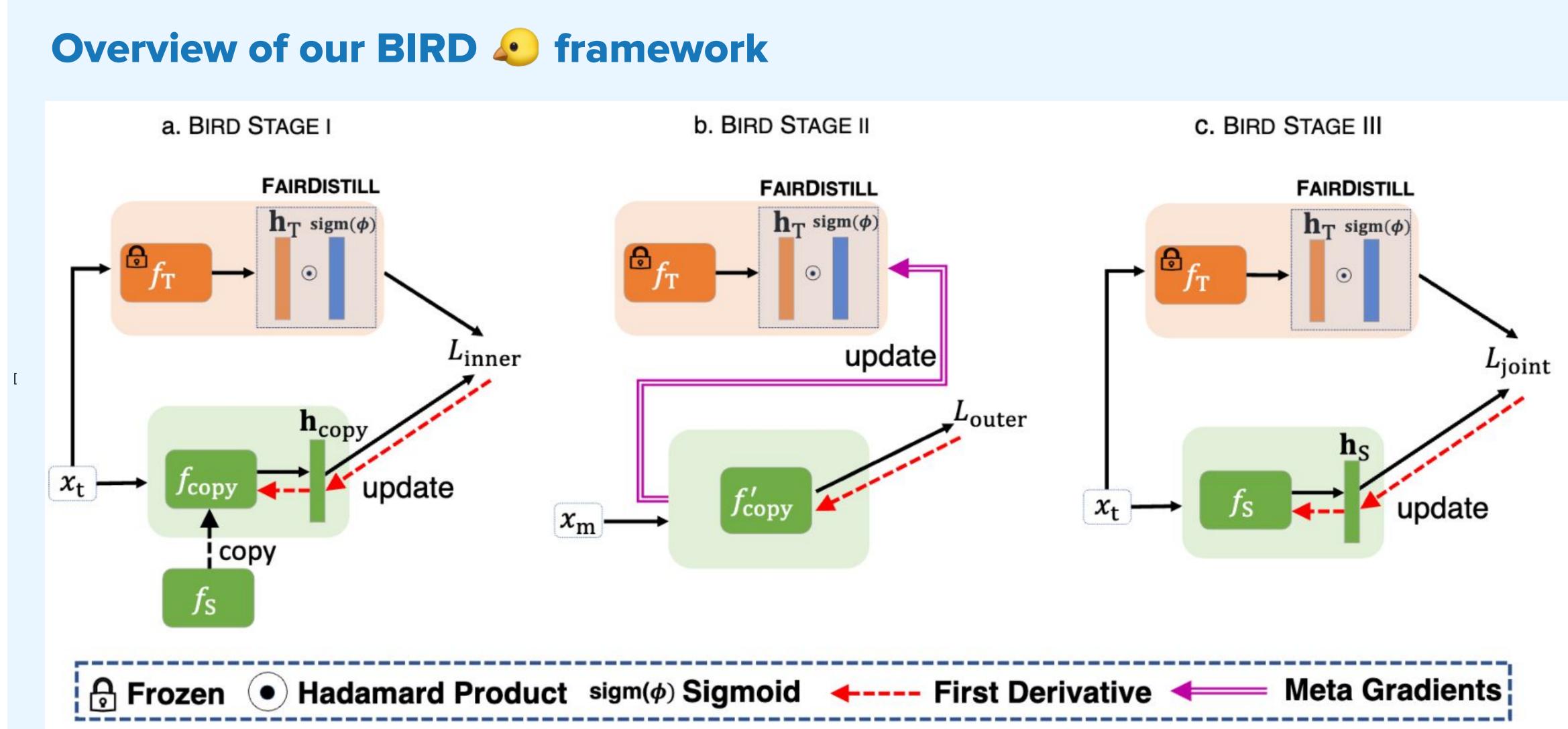
FAIRDISTILL operator using a

the student model with L_{inner} ,


meta-learning framework:

information in the form of

Fairness & Knowledge Distillation: How can we incorporate student feedback to perform Bias Aware Distillation?


Student mimics the fairness properties of the teacher

Fairness baseline teacher (CLIP-ViT/B32, FLAVA), baseline (ResNet-18), and distilled student models using base KD (BKD)

Problem Formulation

Given a dataset **D**^{train} and a biased teacher model f_{τ} optimized for predictive performance on $\mathbf{D}^{\mathrm{train}}$, we aim to learn a student model f_{ς} whose representations do not reflect any undesirable discriminatory biases (i.e., they are fair) and achieve high predictive performance (i.e., they are accurate).

a. BIRD STAGE I	b. BIRD STAGE II	c. BIRD STAGE III
FAIRDISTILL $h_{T} \operatorname{sigm}(\phi)$ L_{inner} x_{t} f_{copy} f_{s}	FAIRDISTILL $h_T \operatorname{sigm}(\phi)$ update f'_{copy}	FAIRDISTILL $h_{T} \operatorname{sigm}(\phi)$ L_{joint} x_{t} f_{S} $update$

BIRD improves	fairness	of knowledg	e distillation

Shown is the comparative performance of **BIRD** on CelebA Dataset (Left) for three foundation models and on CIFAR10-S dataset (Bottom) for ResNet18→ResNet18. Note that all results indicate avg. performance across five independent runs. Arrows (↑↓) indicate the direction of desired

performance. BIRD retains the predictive power (AUROC) of the baseline while improving fairness criterion (shaded).

Method	AUROC (†)	F1-score (†)	$\Delta_{ ext{mean-DEO}}(\downarrow)$	$\Delta_{ ext{max-DEO}}(\downarrow)$
Baseline	98.91 ± 0.02	88.34 ± 0.17	26.26 ± 0.70	47.94±1.94
BKD	98.95 ± 0.02	88.90 ± 0.13	25.30 ± 0.63	46.92 ± 2.16
FitNet	98.89 ± 0.01	88.15 ± 0.08	26.55 ± 0.66	48.86 ± 1.85
AT	98.99 ± 0.02	88.95 ± 0.12	25.16 ± 0.33	46.08 ± 2.27
AD	98.44 ± 0.11	85.98 ± 0.43	16.20 ± 1.18	31.94 ±3.89
MFD	98.93 ± 0.03	88.32 ± 0.10	27.27 ± 0.34	49.16 ± 1.62
BIRD	99.12 ± 0.02	89.45 ± 0.14	19.77 ± 0.37	38.26 ± 1.73

Model	Method	AUROC (†)	$\Delta_{\text{mean-DEO}}(\downarrow)$	$\Delta_{\text{max-DEO}}(\downarrow)$
Flava	Baseline	84.43 ± 0.12	27.48 ± 0.64	29.37±1.53
	BKD	84.42 ± 0.11	27.39 ± 0.58	29.36 ± 1.41
	FitNet	84.47 ± 0.10	26.59 ± 0.62	28.56 ± 0.68
	AD	84.35 ± 0.05	10.54 ± 0.80	12.93 ± 0.79
	MFD	84.45 ± 0.11	26.64 ± 0.62	28.63 ± 0.68
	BIRD	85.48 ± 0.02	2.53 ± 0.17	4.12 ± 0.59
CLIP- ViT/32	Baseline	87.01±0.26	23.38±1.72	24.91±1.15
	BKD	87.07 ± 0.26	23.26 ± 1.67	24.62 ± 1.14
	FitNet	87.17 ± 0.13	22.84 ± 1.03	24.17 ± 1.22
	AD	88.20 ± 0.17	17.02 ± 1.03	17.82 ± 0.97
	MFD	87.22 ± 0.11	21.99 ± 0.70	23.70 ± 1.58
	BIRD	88.55 ± 0.03	3.44 ± 0.92	5.19 \pm 1.06
CLIP- R50	Baseline	87.72±0.06	21.11±0.30	21.97 ± 0.41
	BKD	87.72 ± 0.06	21.10 ± 0.40	22.07 ± 0.41
	FitNet	87.54 ± 0.14	22.01 ± 1.05	23.30 ± 1.15
	AD	88.51 ± 0.02	5.33 ± 0.19	7.93 ± 0.22
	MFD	87.49 ± 0.12	22.56 ± 0.56	23.52 ± 0.33
	BIRD	87.93 ± 0.01	2.65 ± 0.29	4.49 ± 0.48