A dataset with batch effect (2 batches)
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What Is the Batch Effect

Dataset after removing batch effect
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Dimension 1

Aggregation of related datasets allows for higher statistical
performance, particularly in the biological and genomic datasets.

Batch Effect: variability in distribution of datasets due to
different data gathering procedures, different environmental
effects, different data normalization/standardizations

Adverse effect on the statistical performance of inference
tasks performed on the merged datasets
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d How can we correct for batch effects and perform
feature selection for aggregated datasets?
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**» Research Questions

» Example of Batch Effects in Genomic Datasets
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] More generally, how can we ‘learn’ from the
heterogeneous datasets simultaneously?

Problem Formulation and Methodology

Assumptions (in a biological context):

monotonic transformations

multivariate Gaussian

Mathematical Formulation:

min
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MMD, [z, y] =

» Datasets affected by different batch effects, but all are
» The distribution of underlying ground-truth data is

» A small number of features are relevant for the prediction
of the target variable (sparsity)

How far the distribution of each dataset is to the reference distribution?
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®: f~1 fully connected neural networks

= BB where B is a

Ground Truth Data 2 (D2*)

Ground Truth Data 1 (D1¥)
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»Let Z~N(0, 1), Is a normally distributed vector with zero mean and unit variance..
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Ground Truth Data 3 (D3¥)
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Batch Effect Removal
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Implementation and Validation

Experimental Setup:

Generate m synthetic datasets (batches) with n samples per dataset where all datasets come from

the same multivariate Gaussian distribution and follow Y = X8 where 3 Is sparse.

The goal to recover {i|S; + 0}. The result is evaluated using F1 Score.
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F1 Score for Different State-of-the-art batch effect removal methods and different scenarios
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Conclusions
d We propose a novel optimization framework to perform feature selection while removing

Data
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batch effect via joint optimization of Lasso and MMD of different dataset distributions.

. Our experiments on synthetic datasets imply that our method outperforms existing state-of-

the-art batch effect removal packages such as COMBAT-Seqg and Limma drastically.
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