

Peng Dai¹, Sina Baharlouei¹, Taojian Tu², Handan Hong², Sze-chuan Suen¹, Meisam Razaviyayn¹, Bangyan Stiles²

¹ Industrial and Systems Engineering, University of Southern California, Los Angeles, CA 90089, USA ² Pharmacology and Pharmaceutical Science, University of Southern California, Los Angeles, CA 90089, USA

What Is the Batch Effect

- Aggregation of related datasets allows for higher statistical **performance**, particularly in the biological and genomic datasets.
- **Batch Effect: variability** in **distribution of datasets** due to different data gathering procedures, different environmental effects, different data normalization/standardizations
- **Adverse effect** on the **statistical performance** of inference tasks performed on the merged datasets

Problem Formulation and Methodology

Assumptions (in a biological context):

> Datasets affected by **different batch effects**, but all are monotonic transformations

 \succ The distribution of underlying ground-truth data is multivariate Gaussian

> A small number of features are relevant for the prediction of the target variable (**sparsity**)

Mathematical Formulation:

Lasso \triangleright Let $Z \sim N(0, 1)$, is a normally distributed vector with zero mean and unit variance. (i)), $\Phi_i(y)$) + $\mu \sum_{i=1}^{m} \text{MMD}\left(\Phi_i(\mathcal{D}_i), \Sigma Z\right) + \lambda \|\boldsymbol{\theta}\|_1.$

$$\min_{\boldsymbol{\Phi},\boldsymbol{\theta},\boldsymbol{\Sigma}} \quad \frac{1}{n} \sum_{i=1}^{n} \sum_{(\boldsymbol{x},y)\in\mathcal{D}_{i}} \ell\Big(h_{\boldsymbol{\theta}}\big(\boldsymbol{\Phi}_{i}(\boldsymbol{x})\big)\Big)$$

$$MMD_{u}^{2}[x,y] = \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j\neq i}^{m} k(x_{i},x_{j}) + \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j\neq i}^{n} k(y_{i},y_{j}) - \frac{2}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} k(x_{i},y_{j})$$

 $\Phi: f^{-1}$ fully connected neural networks with non-negative weights (monocity). P^* : ~ $N(\mu, \Sigma)$, where $\Sigma = B^T B$ where B is a low rank matrix.

Feature Selection in the Presence of Batch Effect

atch effect	Dat
-------------	-----

• •		GSE154892			GSE130528	
		ID	GSM4681905	ID	GSM374179	
batch • A • B	batch	1	8.829551	1	1177.	
	• A • B	2	8.357929	2	2846.	
		3	9.097497	3	4091.	
		4	9.165594	4	141.	
		5	9.837312	5	137	
		6	11.12557	6	626.	

feature selection for aggregated datasets?

heterogeneous datasets simultaneously?

• We propose a novel optimization framework to perform feature selection while removing batch effect via joint optimization of Lasso and MMD of different dataset distributions. • Our experiments on synthetic datasets imply that our method outperforms existing state-ofthe-art batch effect removal packages such as COMBAT-Seq and Limma drastically.

Limma	Shaham	Normalization	PCA
0.077	0.326	0.061	0.143
0.109	0.143	0.204	0.089
0.217	0.289	0.231	0.228
0.238	0.297	0.16	0.238

